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Abstract

Background: Unsupervised machine-learned analysis of cluster structures, applied
using the emergent self-organizing feature maps (ESOM) combined with the unified
distance matrix (U-matrix) has been shown to provide an unbiased method to
identify true clusters. It outperforms classical hierarchical clustering algorithms that
carry a considerable tendency to produce erroneous results. To facilitate the application
of the ESOM/U-matrix method in biomedical research, we introduce the interactive
R-based bioinformatics tool “Umatrix”, which enables valid identification of a biologically
meaningful cluster structure in the data by training a Kohonen-type self-organizing map
followed by interface-guided interactive clustering on the emergent U-matrix map.

Results: The ability to detect clinical relevant subgroups was applied to a data
set comprising plasma concentrations of d = 25 lipid markers including endocannabinoids,
lysophosphatidic acids, ceramides and sphingolipids acquired from n= 100 patients with
Parkinson's disease and n = 100 controls. Following ESOM training, clear data structures in
the high-dimensional data space were observed on the U-matrix, allowing separation of
patients from controls almost perfectly. When the data structure was destroyed
by Monte-Carlo random resampling, the U-matrix became unstructured and
patients and controls were mixed. Obtained results are biologically plausible and
supported by empirical evidence of a regulation of several classes of lipids in
Parkinson's disease.

Conclusions: Sophisticated analysis of structures in biomedical data provides a
basis for the mechanistic interpretation of the observations and facilitates subsequent
analyses focusing on hypothesis testing. The freely available R library “Umatrix” provides
an interactive tool for broader application of unsupervised machine learning on
complex biomedical data.

Background
Biomedical research generates increasingly complex data [1, 2] that are challenging for

information processing and knowledge discovery. However, novel methods employing

data driven approaches to complex clinical information are increasingly being

esteemed [3, 4]. This is currently facilitated by developments in data science consid-

ered as a rapidly growing interdisciplinary research area that deals with the problem-
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oriented processing of large amounts of complex data with the aim to discover and

process knowledge [5–7].

Among key technologies for complex data evaluation figures machine learning [8]. Its

major forms are supervised or unsupervised learning. For the first, the data space, D = {(xi,

yi)| xi ∈X, yi ∈Y, i = 1…n } consists of an input space X comprising vectors xi = <xi,1,…xi,d > ∈
Pδ with d > 0 different parameters (features) acquired from n > 0 cases, and the output space

Y comprising yi ∈ C= {1,…, c} of c possible classes for the cases. Classes are, for example,

treatment groups or diagnoses. The task is to learn a suitable algorithm that maps the input

cases to the output classes and can be used for assignment of unlabeled cases to the right

class. By contrast, in the case of unsupervised machine learning the data space Du = {xi |

xi ∈X, i = 1…n} lacks the class labeling and the task is to find interesting structures in the d-

dimensional feature space Du ⊂ Rd that is accessible to biomedical interpretation.

Identification of structures in high-dimensional data by means of unsupervised ma-

chine learning can be used to explore whether a complex data set contains information

that reflects the experimental setting. For example, the possibility to separate patients

from healthy subjects via structures in a data set encourages further statistical explor-

ation as this observation strongly supports, that the acquired data carries problem-

relevant information. Structures in high-dimensional data are also employed for

subgroup stratification known as clustering. While several different clustering methods

are commonly used, most of them occasionally produce erroneous results by assigning

data points to the wrong groups or by imposing cluster structures on cluster-free data

sets [9, 10]. As it is imperative that structures identified in biomedical data correctly re-

flects the cluster structure, we have recently proposed emergent self-organizing feature

maps (ESOM), combined with the U-matrix, as a viable, unbiased alternative method

to identify true clusters in the high-dimensional data space [11, 12]. To facilitate data

driven research approaches, the present work introduces a bioinformatics toolbox for

unsupervised machine learning implemented as emergent self-organizing feature maps

(ESOM [13]) combined with the U-matrix [14].

Methods
Biomedical data set

A data set suitable for the present assessment was available as plasma concentrations

of d = 25 lipid markers (Fig. 1) assayed in probes drawn from Parkinson patients and

healthy controls. The assessment of lipid markers in the context of Parkinson’s disease

is based on evidence of an involvement of lipid regulation [15–21].

Subjects and study design

The study followed the Declaration of Helsinki and was approved by the Ethics Com-

mittee of the Medical Faculty of the Goethe – University Frankfurt am Main, Germany

(reference number 197/13). Informed written consent into study participation and pub-

lication of the results in an anonymized form was obtained from all subjects. Employ-

ing a parallel group design, patients with Parkinson's disease (n = 128, age = 69 ± 8.

2 years (mean ± standard division, body mass index, BMI = 25.3 ± 4.3, 85 men) and

healthy controls (n = 350, age = 26.9 ± 6.6 years, BMI = 22.7 ± 3.4, 117 men) were con-

secutively recruited from outpatients and inpatients of the Department of Neurology
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(patients) and from students and staff members of the hospital (controls) who routinely

reported at the institutional occupational health service. From this, BMI and sex

matched samples of n = 100 subjects per group were drawn whereas the age difference

was addressed during data preprocessing (see respective section below). Inclusion cri-

teria were age ≥ 18 years, for patients a neurologically verified diagnosis of Parkinson’s

disease and for controls no current medical condition queried by medial interview, and

no drug intake for at least 1 week except contraceptives, vitamins and L-thyroxin.

Lipid mediator plasma concentration analysis

From each subject, a venous blood sample (9 ml) was collected into a serum tube and

centrifuged at 3000 rpm for 10 min. Plasma was separated and frozen at − 80 °C until

assay. A total of n = 43 different lipid mediators (Fig. 1) was analyzed from the plasma

samples. Plasma concentration analyses were performed using liquid chromatography-

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) essentially as de-

scribed previously [22, 23]. The selection included endocannabinoids (AEA, OEA), lyo-

sophosphatidic acids (LPA16:0, LPA18:1, LPA18:2, LPA18:3, LPA20:4), ceramides

Fig. 1 Dotplot of plasma concentrations of various lipid markers. The dots display the single data, sorted in
order of consecutive study number, starting with the Parkinson patients (n = 100, green dots) and followed
by the healthy subjects (n = 100, blue dots). The figure has been created using the R software package
(version 3.4.0 for Linux; http://CRAN.R-project.org/ [24])
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(Cer16:0, Cer18:0, Cer20:0, Cer24:0, Cer24:1, GluCerC16:0, GluCerC24:1, LacCerC16:0,

LacCerC24:0, LacCerC24:1; Cer = ceramide, GluCer = glucosylceramide, LacCer = lacto-

sylceramide), and sphingolipids (sphinganine, sphingosine, S1P, SA1P C16Sphinganine,

C18Sphinganine, C24Sphinganine, C24:1Sphinganine). For all analytes, the concentra-

tions of the calibration standards, quality controls and samples were evaluated by the

Analyst software 1.6 and MultiQuant Software 3.0 (Sciex) using the internal standard

method (isotope-dilution mass spectrometry). Calibration curves were calculated by

linear regression with 1/x weighting for ceramides and LPA.

Data analysis

Data were analyzed using the R software package (version 3.4.0 for Linux; http://CRAN.

R-project.org/ [24]) on an Intel Xeon® computer running on Ubuntu Linux 16.04.2 64-bit.

The data space consisted of d = 25 lipid markers measured in the plasma of Parkinson pa-

tients or healthy subjects. Specifically, from the original cohort of n = 478 subjects, BMI

and sex matched samples of n = 100 Parkinson patients and n = 100 healthy subjects were

drawn using a propensity score matching (PSM [25]). This obtained samples of subjects

who were comparable, i.e., did not statistically significantly differ, on the covariates BMI

(Parkinson patients: BMI 24.9 ± 3.8, healthy subjects: BMI 24.7 ± 3.5, t-test: t = − 0.36307,

df = 197.13, p = 0.7169) and sex (Parkinson patients: 52/48 men/women, healthy subjects:

64/36men/women, χ2-test: χ2 = 2.4836, df = 1, p = 0.115).

The data space was examined with the task to find interesting structure, for which

unsupervised machine learning provides the adequate methodology. Specifically, for

unsupervised machine learning the data space Du = {xi | i = 1…n} does not include the

class information, i.e., diagnose of Parkinson disease, and the task is to find distance

and density based structures in the d-dimensional feature space Du ⊂ Rd that can

subsequently be interpreted in a biomedical context such as a clinical diagnosis. The

analyses were performed using an interactive R toolbox (“Umatrix”); the analytical steps

included (i) data preprocessing, (ii) identification of distance and density-based struc-

tures in the data space, and (iii) interpretation of these structures with respect to group

respectively cluster structures and their relation to the clinical diagnosis, which will be

described in detail as follows.

Data prepossessing

The exploration of the data space was preceded by data preprocessing as an important

step in the knowledge discovery process, which is considered as a fundamental building

block of data mining. Data preprocessing comprised of (i) log transformation, (ii) age

correction, (iii) uniform scaling and (iv) imputation of missing data. Specifically, (i) as

quantile-quantile plots pointed at log-normal distribution of the data, which is in line

with general observations in blood-derived concentration data [26], data was zero in-

variant log-transformed, except for the two endocannabinoids (AE and OEA) for which

the plots suggested to prefer the original linear scaling. Subsequently, (ii) the influences

of age on the lipid marker plasma concentrations were reduced by applying corrections

based on robust linear regression using the Levenberg-Marquardt nonlinear least-

squares algorithm implemented in the R library “minpack.lm” (https://cran.r-project.

org/package=minpack.lm [27]). To obtain (iii) a uniform scaling of all lipid marker
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plasma concentrations suitable to be assessed for Euclidean distances, data were trans-

formed into percentages [28], i.e., into the interval [0,100]. Finally, a single missing data

point was imputed using a k nearest neighbor algorithm with k = 3 [29] and applying

the weighted average method and Euclidean distance as implemented in the “DMwR” R

library (https://cran.r-project.org/package=DMwR [30]).

Identification of distance and density based structures in the data space

The data respectively feature space D = {xi, i = 1,…, 200} ⊂ℝd, d = 25 was explored for

emergent structures using unsupervised machine learning [8]. Of note, the information

about the presence or absence of the disease was not included in this analysis. The aim

of this analysis was to find interesting structures in the data space accessible to

subsequent biomedical interpretation. This was obtained by the application of

emergent self-organizing feature maps (ESOM) [14] that are based on a topology-

preserving artificial neuronal network (Kohonen SOM [13, 31]). The ESOM was used

to project high-dimensional data points xi ϵ Rd onto a two dimensional grid of neurons

(map space). The analysis followed the workflow specified in Fig. 2.

The identification of emergent data structures in the 25-marker plasma lipidomics

data set required four major steps comprising (i) the preparation of the neuronal grid

for data projection from the high-dimensional onto a two-dimensional space, (ii) the

learning phase of the self-organizing map, (iii) the detection of distance based data

structures on this map and (iv) the detection of density based data structures on this

map, which will be described as follows. In addition, the same analyses were applied

after destruction of the possible high-dimensional structure in this data set was

destroyed by Monte-Carlo [32] random resampling of n = 200 data among each lipid

marker concentration vector using the R library “sampling” (https://cran.r-project.org/

package=sampling [33]).

Preparation of the neuronal grid

A characteristic of ESOM as a tool for the characterization of the high dimensional

data space is the large number of neurons. The grid size is chosen on the criteria that

(i) it should contain a sufficiently large number of neurons to avoid that SOMs de-

generate to a k-means like clustering algorithm with no potential to show emer-

gent structures [34], (ii) it should, however, not be too large to avoid that each

input data point can be represented on the map on a separate neuron with a sur-

rounding area of other neurons interpolating the data space, and (iii) the grid

should not be quadratic, but observe edge ratios between 1.2 and the golden ratio

of 1.6. This has been shown empirically to improve representation performance

[35]. Combining the requirements for size and form, as a starting point for the ex-

ploration of structures in a data set a SOM with 4000 (80 × 50) neurons has been

successful in many applications and was also applied to the present data set. High

dimensional datasets are usually projected by ESOM onto a finite but borderless

output space. The borderless space is obtained by the embedding of the finite grid

of neurons on the surface of a torus (toroid). This avoids the problems of border-

line neurons [14] and subsequent boundary effects [14].
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Learning of the self-organizing map

On the SOMs each neuron represented a vector located in the d dimensional feature

space, traditionally called “weights” (wi). Each component’s weight was initially ran-

domly drawn from the range of the corresponding feature of the data and subsequently

adapted to the data during the learning phase that used 25 epochs, i.e., presentations of

the case data Du. The weights were adapted according to the SOM learning rule: Δwi

= η(t) h(bmui,, r, t)(xi −wi) where xi is a presented data point, bmui the closest neuron

for xi in the SOM (best matching unit, BMU), wi the weight vector of neuron ni, h(…)

∈[0,1] the neighborhood which depended in particular on the distance r from the bmui
to the neuron ni on the grid of neurons and η(t) ∈ [0, 1] the learning rate. Learning rate

and neighborhood radius are decreased during learning [13]. The result of this proced-

ure is a data-driven self-organized and topology (neighborhood) preserving projection

of the d dimensional feature space onto the two dimensional grid of neurons. The

cases, i.e., data points of the input space, are represented in form of localizations of

their respective BMU.

Detection of distance based data structures

Basically, any projection of high dimensional data points onto two dimensions is unable

to preserve all the distances between the points [36]. This implies the distances be-

tween the best matching units on the grid of neurons are not always proportional to

the data’s distances in feature space. To solve this problem an U-matrix is constructed

on top of the grid of neurons. This illustrates the local distance structures of the input

space on top of layout of the data. The U-matrix is the canonical tool for the display of

the distance structures of the input data on ESOM [14]. Specifically, the U-matrix is

based on the local topology of the neuron space. If Ui denotes the set of neurons in the

immediate neighborhood of a neuron ni in the map space, the U-height of a neuron

uh(ni) is given by the sum of all distances d(…) from the weight vector of ni to the

Fig. 2 Scheme of the workflow of generating a U-matrix with subsequent identification of clusters in the
data using the R package “Umatrix” (https://cran.r-project.org/package=Umatrix). The process starts with a
topology-preserving projection of high-dimensional data points onto a two-dimensional self-organizing
network consisting of a grid of neurons of the Kohonen type [13] obtained via training of an emergent
self-organizing map (ESOM). Subsequently, the distances between data points are projected on top of the
grid as so-called U-matrix. Since the ESOM is toroid, i.e., opposite edges are connected, a so-called island is
cut off the U-matrix, which contains each part of the U-matrix only once. Finally, on the finalized U-matrix
clusters can be obtained interactively
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weight vectors of the neurons in Ui: uhðniÞ ¼
P

n∈Ui
dðwðniÞ;wðnÞÞ:U-heigts represent

distance structures within the data space in the vicinity of the weight vector w(n) of a

given neuron n. A visualization of all U-heights at the neuron’s coordinates is called the

U-matrix [14] on top of the toroid SOM grid. For a two-dimensional display of a toroid

map space, the U-matrix is presented as four adjacent copies in a tiled display, which

has the disadvantage that each input data point is repeated on four locations. There-

fore, the tiled U-matrix is trimmed at suitable borders in a way that each data point is

represented only once. This results in a 3-dimensional U-matrix landscape with curved

boundaries (U-map or “Island”) where large “heights” represent large distances in the

high-dimensional feature space while low “valleys” represent similar data. “Mountain

ranges” visually separate clusters, and the view is enhanced by applying isohyptic color-

ing scheme derived from earth orbiting satellite measurements [37].

Detection of density based data structures

In addition to distance-based clusters, groups of data can also emerge from differences

in data density. Therefore, the U-matrix was further enhanced by calculating a P-

matrix [14] displaying the point density in data space. This density p(ni) was estimated

as the number of data points in a sphere with radius r around the weight vector w(ni)

for each neuron ni on the ESOM’s output grid p(ni) = |{data points x| d(w(ni),x) < = r}|.

The U*-matrix combines distance structures (U-matrix) and density structures (P-

matrix) into a single matrix [14]. This may provide better distinguishable cluster bor-

ders and can be applied when improvement of a standard U-matrix is desired.

Implementation
Implementation of a visualization guided ESOM/U-matrix R tool

An interactive tool ESOM/U-matrix unsupervised machine learning was realized using

the freely available R software package (version 3.4.0 for Windows; http://CRAN.R-pro-

ject.org/ [24]) and our newly introduced R package “Umatrix” (https://cran.r-project.

org/package=Umatrix). For the graphical interface the open source web application

framework Shiny for R was used (https://CRAN.R-project.org/package=shiny [38]).

An R library (“Umatrix”; Figs 3 and 4) was programmed that performs the tasks in sep-

arate modules dedicated to (i) data projection comprising the learning respectively train-

ing of an emergent SOM (subroutine “iTrainEsom”), (ii) distance-based data structure

visualization (U-matrix, subroutine “iUstarmatrix”), (iii) density-based data structure

visualization (P-matrix), which can be combined with the U-matrix into a U*-matrix (sub-

routine “iUstarmatrix”), and (iv) clustering and data classification (subroutine “iClassifica-

tion”). In addition to the interactive modules, data analysis can also be performed via

direct call of R functions. For example, the first algorithm comprising the learning re-

spectively training of an emergent SOM (ESOM) can be also accessed via the R-script

(esomTrain(…)). Similarly, visualizations can be obtained via the R-script (ustarmatrix-

Calc(…)). Since most of the projections map the data onto a borderless toroid map space,

an interactive tool (“iUmapIsland”) is provided to create a planar structure, called “U-

map” or “island” (Fig. 4a). Finally, for flexible visualization purposes the package contains

routines for two dimensional (top view, “plotMatrix(…)”) and three dimensional plots of

U-, P- and U*matrices.
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a

Fig. 3 (See legend on next page.)
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Results
A matrix of 25 lipid biomarkers assayed in the plasma of 200 subjects provided the data

space D = {xi, i = 1,…, 200} ⊂ℝd for the present analysis. A SOM was trained to obtain a

topology pre-serving mapping of n high-dimensional data points xi ϵ Rd onto a two

dimensional grid of neurons 50 × 80 neurons. The output grid of neurons (units) was

embedded in O, a toroid output space where the projections of the points are the

corresponding best-matching units (BMU). These BMUs were visualized on the SOM as

dots (Fig. 5). On this SOM, each neuron n and the neurons in its neighborhood N(n) rep-

resented points in the data space. The sum of distances between n and the neurons in

N(n) in the high-dimensional space is shown on a U-matrix as a height value (U-height)

at neuron n. Large U-heights mean that there is a large gap in the data space while low

U-heights mean that the points in {n ∪N(n)} are close to each other within the data space.

On a 3D-display, this can be visualized as valleys, ridges and basins (Fig. 6).

As the grid size was chosen large enough to map sufficiently distinct points of the

data space to distinct BMU coordinates on the grid, data points within a distance-

induced cluster structure in the data space can be separated by water-sheds allowing

for emergence in the SOM-based algorithm [11]. Emergent algorithms have the prop-

erty that novel, formerly unseen structures on a macroscopic level (e.g., valley ridges,

clusters) become visible on top of the only locally defined U-heights. If bi and bj denote

best matching units (BMUs) of data points xi and xj, and bi and bj are connected by an

edge in D, a U-cell is defined as follows: a U-cell has a floor shaped by the border lines

of the Voronoi cell of the BMU. On each borderline was a vertical plane; if the border-

line is between bi and bj, the height of the U-cell on this borderline (AU-height) is the

distance d(xi,xj) > 0 of the data points in the data space. The largest U-heights along

(See figure on previous page.)
Fig. 3 Screenshots of interface components “iEsomTrain” and “iUstarmatrix” of the interactive “Umatrix” R
library. a: The “iEsomTrain” component performs the training of the emergent self-organizing map (ESOM)
and displays the resulting U-matrix. Default values are shown. The following user interactions are implemented:
❶ Selection of the number of training cycles of ESOM. ❷ Selection of the projection grid as either toroid, where
opposite edges are connected, or planar. ❸ Selection of the size of the ESOM. The sizes should meet
the following three criteria: Firstly, it should not be too small as it has been shown that in that case
SOMs degenerate to a k-means like clustering [34]. Secondly, it should not be too large to avoid that
each input data point can be represented on the map on a separate neuron with a surrounding area
of other neurons interpolating the data space. Thirdly, edge ratios between 1.2 and the golden ratio
of 1.6 should be applied as it has been observed that SOMs perform better if the edge lengths of
the map are not equal [35]. However, a SOM with the default sizes of 4000 (80 × 50) neurons has
been successful in many applications. ❹ A prior classification can be loaded from a structured text
file. ❺ The display of the U-matrix can be visually modified such as changing the size, the diameter
of the best matching units or making the colors slightly transparent which enhanced data structure
visibility. ❻ After all parameters have been set, the training of the ESOM is started by pressing the
“Train” button, the numerical results can be saved to a file and ❼ the interface is finally closed. ❽
The trained U-matrix is shown at the right of the interface panel. ❾ Further parameters such as learning rate
can be set in a special expert mode, for details, see the description delivered within the R-package. b: The
“iUstarmatrix” component calculated the data density based P-matrix and displays the U- and the resulting
U*-matrix. The following user interactions are implemented: ❿ the radius of the hyperspheres for density
estimation can be selected based on a suggestion obtained from the probability density distribution
of the distances between the data points. This distribution is displayed below as a Pareto density
estimation (PDE) [72] with the suggested radius indicated as a magenta line adjustable by the user. .
At the top right part of the interface, the U*-matrix is displayed, which results from superposition
of the data-density based P-matrix with the original data-distance based U-matrix . The figure
has been created using the R software package (version 3.4.0 for Linux; http://CRAN.R-project.org/
[24]) using the R package “Umatrix” (https://cran.r-project.org/package=Umatrix)
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the cell borders emerged as mountain ridges pointing at coherent valleys on the U-

matrix, i.e. clusters in the data, which could be identified visually (Figs. 5 and 6).

The cluster structure seen on the U*-matrix indicated two main clusters (Figs. 5 and

6), clearly separated by a high “snow-covered” mountain ridge in the middle of the U*-

matrix. A projection of the original classification into Parkinson patients versus healthy

subjects onto the distance and density based data structures showed that the cohort

was completely separated by lipid-marker plasma concentration data structure. Hence,

plasma lipid markers carry sufficient information to distinguish Parkinson disease as a

separate lipid marker pattern. This was further emphasized by the absence of such

structures when the data was permutated using Monte-Carlo random resampling. The

b

a

Fig. 4 Screenshots of interface components “iUmapIsland” and “iClassification” of the interactive “Umatrix” R
library. a: The “iUmapIsland” component provides an interface to manually cut a so-called “island” out of the
toroid Umatrix. The island should contain each part of the U-matrix only once. It is usually cut along cluster
borders enhancing the visual data structure of emerging in the U-matrix. The following user interactions are
implemented: ❶ the trained U-matrix is shown at the right of the interface panel. Using the mouse, on the
toroid U-matrix (see Fig. 3) a unique region can be marked that contains every best matching unit (BMU) only
once. ❷ The marked region can be cut out of the toroid U-matrix providing the so-called “island” as
the standard representation of the U-matrix. ❸ A prior classification can be loaded from a structured
text file. ❹ The display of the U-matrix can be visually modified such as changing the size, the diameter of the
best matching units. ❺ The numerical results can be saved to a file and the interface is finally closed. b: The
“iClassification” component is an interactive shiny tool that visualizes a given U-matrix and allows the user to
select areas and mark them as clusters. The following user interactions are implemented: On the island, ❻ areas
located in the same regions can be marked with the mouse as clusters, ❼ that can be added to the available
clauses, or, clusters can be deleted manually. ❹ The display of the U-matrix can be visually modified such as
changing the size, the diameter of the best matching units or ❾ making the colors slightly transparent which
enhanced data structure visibility. ❽ Selection of the projection grid as either toroid where opposite edges are
connected or planar. The figure has been created using the R software package (version 3.4.0 for Linux; http://
CRAN.R-project.org/ [24]) using the R package “Umatrix” (https://cran.r-project.org/package=Umatrix)
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Fig. 5 U*-matrix representations of lipid marker plasma concentration patterns (d = 25 markers, Fig. 1)
observed in n = 200 blood samples. The figure has been obtained using a projection of the data points
onto a toroid grid of 50 × 80 = 4000 neurons where opposite edges are connected. The U*-Matrix was
colored as a geographical map with brown (up to snow-covered) heights and green valleys with blue lakes.
Valleys indicate clusters and watersheds indicate borderlines between different clusters. The dots indicate
the so-called “best matching units” (BMUs) of the self-organizing map (SOM), which are those neurons
whose weight vector is most similar to the input. A single neuron can be the BMU for more than one data
pint or subject, hence, the number of BMUs may not be equal to the number of subjects as in the present
case. a: top view on the U matrix showing two distinct regions (clusters) on the left and right of the white
“mountain range” in the middle. The BMUs are colored neutrally (grey). b: The BMUs were differently colored to
analyze the distribution of subjects across the cluster structure of the data space. When the group membership
to either the Parkinson patients (green dots) or the healthy subjects (blue dots) is projected onto the U*-matrix,
it becomes clear that the separate clusters perfectly coincide with the diagnostic classification of the subjects. c:
The cluster structure was destroyed by permutation of the data, resulting on the U-matrix display in a clearly
absent cluster structure with data from Parkinson patients mixed with data from healthy subjects and no clear
“mountain ranges”. The figure has been created using the R software package (version 3.4.0 for Linux; http://
CRAN.R-project.org/ [24]). Specifically, the figures displaying geographical map analogies have been created
using our R package “Umatrix” (https://cran.r-project.org/package=Umatrix)
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resulting U-matrix was devoid of any recognizable cluster structure (Fig. 6.) and resem-

bled earlier demonstrations of U-matrices obtained in structure-less data (see Figs. 3

and 6 in [12]).

Discussion
In this paper, unsupervised machine learning has been shown to identify biologically

plausible structures in high-dimensional biomedical data. Following projection of the

data onto a two-dimensional neuronal grid, training of a self-organizing map and

visualization of the distances between the data points as a color-coded third dimension,

two distinct clusters emerged. This structure coincided almost perfectly with the diag-

nosis of either Parkinson’s disease or healthy controls. Figure 3 shows the prior clinical

classification on top of the ESOM/U-matrix. By contrast, when destroying the lipid-

marker plasma concentration pattern by random permutation of the data, the ESOM/

U-matrix method ceased to show any emergent structure (Fig. 5).

Considering the repeated comparative demonstrations of the ability of this method to

identify true structure in complex data, both artificial and biomedical [12, 14], compari-

sons with alternative clustering methods were not reiterated. Present results reproduce

earlier demonstrations that ESOM/U-matrix correctly detects clusters in artificial [14]

and biomedical data sets [39], while overcoming the imposing of spurious clusters [12,

14]. When the structure in biomedical data is destroyed by permutation, classical clus-

tering algorithms may still suggest a structure. Hence, it is crucial to select an adequate

clustering algorithm. The presently introduced R-library for self-organized structure

finding using an unsupervised machine learning method enhances the availability of

such a method. Previous applications of the ESOM/U-matrix method support the util-

ity of this approach in biomedical research [40–45]. Moreover, ESOM/U-matrix rate is

an intuitive representation with a sound basis in bioinformatics [46]. Its inherent 3D

structure allows intuitive cluster recognition and can also provide a haptic access to the

data space by means of 3D-printing of the structures of the complex feature space [47].

The present analysis used the ESOM/U-matrix method with the task to identify inter-

esting structures in a high dimensional data set composed of lipid mediator plasma

concentrations acquired in paints with a neurodegenerative disease or healthy subjects.

Fig. 6 3D-display of the U-matrix representation of the lipid marker (Fig. 1) plasma concentration pattern. It
shows the Parkinson patients (green dots) are completely separated, i.e., located in a different cluster, from
the healthy subjects (blue dots). A clear separation is indicated by a mountain range in the middle of the
U*-matrix. The figure has been created using the R software package (version 3.4.0 for Linux; http://CRAN.R-
project.org/ [24]). Specifically, the figures displaying geographical map analogies have been created using
the R package “Umatrix” (https://cran.r-project.org/package=Umatrix)
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This suggests that the acquired data contains information that reflects the clinical set-

ting, or any other experimental setting. In the present data set consisting of Parkinson

patients and healthy subjects, this was the expected outcome. Specifically, Parkinson’s

disease is a neurodegenerative disease characterized by a progressive loss of dopamin-

ergic neurons predominantly in the Substantia nigra. Its pathophysiology involves, e.g.,

accumulation and spreading of misfolded proteins [48], neuro-inflammation including

persistent microglial activity [49], neuro-inflammation including persistent microglial

activity [49] and dysfunctions of mitochondrial biogenesis and quality control systems

[50]. The latter processes are essentially regulated by bioactive lipids including

ceramides, sphingolipids, lysophospholipids, eicosanoids, endocannabinoids, HETEs,

omega-3 and omega-6 lipids and EETs [17, 51–59]. The relevance of subtle changes in

complex regulatory circuits has been taken into account by modern omics-based

analysis tools using “gene set enrichment analyses” for the detection of pattern

changes [60, 61]. Hence, the observation that a set of serum lipid markers contain

information relevant for the separation of Parkinson patients from healthy subjects

is biologically plausible. Following data structure detection performed with the

present R library, subsequent analyses may focus on hypothesis testing or may

apply supervised machine learning methods for further data exploration or for the

creation of a diagnostic biomarker.

Among methods for the detection of distance and/or density based structures in

high-dimensional, complex data, ESOM/U-matrix is accompanied by a number of alter-

natives, for example projection methods such as principal component analysis (PCA)

[62], multidimensional scaling [63], isomap [64], t-SNE [65] and many more. PCA and

MDS are continuous projection methods and fail when the cluster structures are not

separable using hyperplanes. Isomap is a projection method that models high dimen-

sional structures using a graph connecting k-nearest neighbors in the data. Whether or

not the graphs show meaningful structures depends very much on the correct choice

of k. This is a clear disadvantage to the ESOM/U-matrix method where the number of

clusters does not need to be specified. t-SNE uses ideas derived from SOM, i.e., it em-

ploys a definition of neighborhood that is large at the beginning of the training and

shrinks during the construction (learning) of the projection. It uses t- distributions to

model neighborhoods of data points in the high-dimensional space as well as in the

low dimensional projection space, which are parameterized by a neighborhood variance

s2. For the calculation of s2 the (dis-)similarity between the neighborhood distributions

in form of the Kullback-Leibler-Divergence [66] is used. The neighborhood size param-

eter s2 is critical for a correct representation of the structures of the input space. The t-

SNE method is not recommended for data with a high intrinsic dimensionality. Thus,

the ESOM/U-matrix method well competes with alternatives partly aimed at the same

goal, i.e., the detection of structures in high dimensional data.

Technical implementations of self-organizing maps including options to generate a

U-matrix have been proposed previously such as, for example, the “yasomi” R package

(https://r-forge.r-project.org/R/?group_id=1021) or the Matlab toolbox “somtoolbox”

(http://www.cis.hut.fi/projects/somtoolbox/). These alternatives lack the essential fea-

ture of projecting the data on a toroid grid, which is essential to avoid border effects.

These packages also lack tools for interactive cluster selection and data classification,

such as cutting the islands. For comparison with the present R library, an example of
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the results of an alternative implementation can be viewed in Fig. 3(a) of [67]. In

addition, the present package provides further options not fully employed in the

present data analysis example. That is, also all fundamental tools were applied in the

present report, in a so-called “expert mode”, which can be selected via a checkbox in

the graphical user interface (item 9 in Fig. 3), the common selections for SOM calcula-

tions are available including different neighborhood functions, initialization parameters

and parameters to tune the cooling, i.e. speed, of the ESOM algorithm. In addition, all

functions offered in the graphical user interfaces are also available through scripting,

which enables automated calculations. Finally, it should be mentioned that the present

toolbox is satisfactorily scalable. Specifically, there is no reason to assume that the strat-

egy behind the ESOM will fail with a more data points although the present implemen-

tation has not particularly been optimized for processing really big data sets. For most

analytical steps the scaling of the Umatrix R library tends to be linear depending on the

distribution of data. The present biomedical example data set comprising 200 × 25 =

5000 data points the ESOM was generated on an Intel® Xeon® Prozessor E5–2690 v2

with 64 GByte memory within less than 1 minute. A dataset containing a million data

points and three parameters was processed on a Macbook Pro with 8 GByte memory

and a 2.9 GHz Intel Core i5 processor within approximately 15 min. A one million data

set with 9000 attributes was learned in less than 1 hour.

In the present report we focused on a single example biomedical data set. Compari-

sons of the ESOM/U-matrix method with alternative cluster algorithms have been ex-

tensively shown previously and were therefore not repeated [11, 12]. Such comparisons

consistently supported the ESOM/U-matrix method as a viable, unbiased method to

identify true clusters outperforming classical clustering methods such as Ward or k-

means, which by imposing predefined cluster shapes occasionally produce cluster struc-

tures that are non-existent in the data [9, 10]. As cluster identification is among central

targets of high-dimensional biomedical data analyses for discovery and prediction

of classes independently of previous biological knowledge [68], the choice of a suit-

able analytical method is crucial to avoid non-reproducible pattern recognition.

The present implementation of the ESOM/U-matrix method as an R library may

provide a broader access to such a method. Previous successful applications of this

method in biomedical informatics include data sets related to pain research [43,

69], computational drug discovery [40, 70] or lipidomics research in neurodegener-

ative diseases [71].

Conclusions
In the present report, unsupervised machine-learned analysis [8] was applied to a data

set comprising lipid marker concentrations assayed in blood plasma 200 subjects. It

was demonstrated that the combination of contemporary data science with analytical

techniques for biomarkers allows recognizing Parkinson patients from plasma patterns

of lipid markers. This unsupervised machine-learned analysis provides biologically

plausible candidates compatible with prior knowledge from molecular research that fi-

nally may be complied into a complex biomarker. The implementation of the machine-

learned analysis [8] applied using the emergent self-organizing feature maps (ESOM)

[13] and the so-called U-matrix [14] into the freely available R environment facilitates

broad accessibility of the method.
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