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Abstract

Background: Genomic GC content varies both within and, substantially, between
microbial genomes. While some of this variation can be explained by evolutionary
divergence and environmental factors, a notable portion is not understood. To
investigate further, we explore a non-linear mathematical model (gcMOD) of single-
nucleotide polymorphism (SNP) GC content (sbGC, the GC content of substituted
bases) as a function of core genome GC content (cgGC). We estimate the model’s
parameters using Bayesian inference on empirical genetic data from the microbial
core genomes of 35 bacterial species, each of which contains at least 10
representative strains. We utilize 716 bacterial genomes in total. We also explore
some possible implications that result from the mathematical properties of gcMOD.

Results: We find that the median GC→ AT substitution rates (β) are almost always
considerably higher than the corresponding AT → GC substitution rates (α) for all 35
core genomes. The distribution of β is also noticeably more concentrated (i.e.
thinner) than the corresponding distribution of α for almost all species, excepting the
bacteria with the most GC-rich genomes. We also demonstrate that at the singularity
point of gcMOD (where α = β), the model is reduced to a linear equation. By
analyzing the linear model, we show that due to the constraints on gcMOD, the
mutation rates can have profound influence on both cgGC as well as sbGC.
Moreover, by examining the mathematical properties of gcMOD’s inverse function,
we find that change in cgGC, and hence in genomic GC content, can potentially
occur quite rapidly.

Conclusions: Examining the distributions of the GC→ AT and AT → GC substitution
rates for 35 bacterial species, we demonstrate that the former (β) are remarkably
similar for all species examined. In addition, GC→ AT substitution rate distributions
were considerably more concentrated for all species, with the mode consistently
peaking at higher rates than for AT → GC substitution rates.

Keywords: Bacterial genomics, Core genome analysis, Single nucleotide
polymorphisms, Evolutionary biology

Background
Chargaff’s parity rules [1] state that the number of adenine (A) nucleotides is similar to

the number of thymine nucleotides (T) in double-stranded DNA due to Watson–Crick

base pairing. Likewise, the number of guanine nucleotides (G) is approximately the

same as the number of cytosine nucleotides (C). It is therefore common to refer to
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genomic base composition either as AT or GC content; we shall henceforth do the lat-

ter. GC content (%GC) in prokaryotes varies substantially, especially between taxa [2,

3]. The forces behind this variation have not been completely resolved, although both

phylogenetic relationships and environmental influences appear to be fundamental as-

pects [4]. Microbial communities coinhabiting similar environments tend to have simi-

lar %GC regardless of taxa [5]. Factors such as nitrogen abundance [6], AT-biased

mutations due to loss of DNA repair genes [7], population density [8] and selective

pressures [9–11] may explain some of the variance [2, 3, 12, 13] that spans from 13.5%

GC in the intracellular symbiont Candidatus Zinderia insecticola to 75% GC in the soil

bacterium Anaeromyxobacter dehalogens [14].

In a previous publication [15], we found an association between %GC (cgGC) of the

core genome and %GC of substituted bases (sbGC, predominantly in SNPs, but re-

ferred to as sbGC to account for non-removed recombined sites and sequencing er-

rors). The association indicated a strong bias in sbGC for the most AT-rich genomes,

while the opposite (AT bias) was observed for the most GC-rich genomes (%GC ≥

60%). We created a mathematical model (gcMOD) that considered sbGC as a func-

tion of cgGC [15]. Two parameters, one for AT → GC mutation rates (α) and the

other for GC→ AT mutation rates (β), had to be estimated so that gcMOD could

make predictions of sbGC. It should be noted that GC or AT mutation rates should

here be taken to mean that an A or a T nucleotide mutates to a C or a G nucleotide

(and vice versa). Initially, we estimated α and β using non-linear least squares regres-

sion (NLS) to fit gcMOD to empirical data. The data consisted of 716 fully sequenced,

closed genomes comprising 35 bacterial species from 6 phyla, each species having

more than 10 strains (see [15] for details). The resulting parameter estimates indi-

cated that the best model was obtained when GC→AT mutation rates outnumbered

AT → GC mutations approximately 2 to 1.

The purpose of the present study is twofold: first, to expand on the previous study

[15] by estimating mutation rate parameters both for each core genome and collectively

(e.g. one α and β for all) using Bayesian inference, and second, to delve deeper into the

mathematical properties of gcMOD.

Results
As previously shown [15], gcMOD describes sbGC as a function of cgGC (more details

in the Methods section). More precisely, core genome SNP GC content is assumed to

be a function of total core genome GC content. Both sbGC and cgGC are found to

comply with Chargaff’s parity laws [15]. Change in sbGC with respect to cgGC is thus

modeled as a fraction of AT → GC mutation rates (α) and GC→AT mutation rates

(β). In a recent publication [15], this was carried out using NLS against empirical data,

as described above. Here we re-estimate α and β with Bayesian inference using the

same empirical data, and we expand on the previous analyses by estimating empirical

distributions for α and β for each of the 35 core genomes. Thus, we estimate mutation

rate parameters for each core genome by considering sbGC for each strain with respect

to its corresponding cgGC. We also estimate α and β collectively for mean sbGC and

cgGC for all core genome/species in bulk. This was also done in the previous study

(see additional file 5 in [15]), and we compare those results to our present results

below. We choose this approach in order to explore the more asymptotic (i.e. long-

Bohlin et al. Big Data Analytics             (2019) 4:5 Page 2 of 11



term) properties of SNP GC content in microbial core genomes. We assign normal

prior distributions to α and β, and we assign normally distributed hyperparameters to

the prior distributions’ respective means. We also assume that gcMOD’s model errors

follow a normal distribution, but with a fixed mean μ = 0 and precision 1/σ modeled as

a gamma distribution. More details regarding the model setup can be found in the

Methods section.

Parameter estimates based on all species/core genome sbGC (i.e. parameter estimates

based on bulk sbGC from all strains constituting each core genome/species) do not in-

dicate substantial deviations from previous NLS-based estimates. Figure 1 shows slight

deviations from the posterior distribution implicitly assumed by the NLS-based method

(a Student’s t-distribution; see [15], additional file 5). Furthermore, we find (see Fig.

2) that α = − 1.443 95%CredI(− 2.680, − 0.638) and β = 2.645 95%CredI (2.093, 3.660).

Previous NLS estimates were α = − 1.35 95%CI(− 2.16, − 0.54) and β = 2.59 95%CI (1.99,

3.19) for the bulk dataset. This suggests both higher (specifically, 2.645/1.443 = 1.83

times higher) and more concentrated GC→AT mutation rates than AT → GC muta-

tion rates (95%CredI (2.093, 3.660) for β versus 95%CredI(− 2.680, − 0.638) for α; see

Methods section for details).

Using Bayesian statistics, we estimate AT → GC and GC→AT mutation rates for

each species/core genome (35 α and β parameter pairs in total). In other words, we fit

gcMOD for each core genome. We assign hyperpriors to the precisions (gamma) of

both α and β, but we fix rather than assign hyperpriors to the means (more details in

the Methods section). Figure 3 shows that the general trend of thinner distributions for

β is largely the trend for all species. Actual estimates can be found in Additional file 1.

Closer examination of these results, however, reveals that the most GC-rich microbes

(e.g. Brucella spp., Pseudomonas spp. and Mycobacterium tuberculosis) have estimated

posterior distributions for α and β that are more similar in terms of precision. For most

other species, the estimated distributions for α vary considerably—more than for the

Fig. 1 Density plot of the posterior distributions of bulk estimated α (blue) and β (red) for all 35 species/
core genomes. The red distribution represents GC→ AT mutation rates while the blue distribution AT→ GC
mutation rates
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corresponding estimated distributions for β. A notable exception is the case of the

pathogen Francisella tularensis, which is known for its ability to acquire DNA horizon-

tally [16]. Additionally, only 12 closed strains of F. tularensis were available, so genomic

heterogeneity between its strains might bias estimates.

It is evident from the formulation of gcMOD that if α = β (i.e. if the AT → GC and

GC → AT mutation rates are identical), the equation approaches a singularity point. A

mathematical inquiry into this singularity, however, reveals that the equation degener-

ates into a linear equation with a slope dependent on the mutation rates (see Methods

section).

Since sbGC is modeled as a function of cgGC, linearizing gcMOD by setting α = β in-

dicates that the mutation rates impose constraints on cgGC (x in gcMOD), as β x < 1

=> x < 1/β; β ≠ 0. Indeed, as can be seen from Fig. 4 and the Methods section, the de-

rivative of gcMOD is decreasing and approaches 0 only as x→∞, which implies (by the

inverse function theorem) that gcMOD has an inverse function. Figure 5 demonstrates

that the inverse of gcMOD increases in an exponential-like manner. Therefore, change

in sbGC can induce rapid change in cgGC, and thus in genomic GC content in general.

This can be mediated, for example, by loss of mismatch and repair genes (MMR),

something that was observed by Lind and Anderson in a knockout experiment on Sal-

monella typhimurium [17].

Discussion
Figure 1 shows that the absolute values of GC → AT mutation rates are considerably

larger than those of AT → GC mutation rates. Closer examination of all mutation rates

reveals that the more frequent GC → AT mutation rates appear to be consistent across

species, while AT → GC mutation rates exhibit considerable variation between species.

Fig. 2 Bulk SNP GC content (sbGC) for each of the 35 core genomes (vertical axis) plotted against
corresponding core genome GC content (cgGC, horizontal axis). Dots are colored according to taxonomic
group (see legend). The dark blue points represent gcMOD with median α (AT→ GC mutation rates) and β
(GC→AT mutation rates) estimated using Bayesian inference. The dashed line represents an alternative
hypothesis, namely identical SNP GC- and core genome GC content (sbGC = cgGC)
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The remarkably similar and consistently high GC → AT rates observed for the majority

of the 35 microbial species are assumed to be a consequence of the evidence-based hy-

pothesis that mutations are universally AT-biased [18]. Due to the fact that β is nega-

tive, one interpretation of the higher variance in AT → GC mutation rates between

core genomes/species is that selection and/or a selective neutral force [19, 20] acts to

retain G/C nucleotides [9]. Hence, an interpretation of gcMOD (from the lower abso-

lute median/mode β estimates in Figs. 1 and 3) is that G/C nucleotides leave microbial

genomes less frequently than A/T nucleotides enter. This suggests that a mutation in a

clonal isolate of a bacterial species (e.g. a pathogenic strain in a disease outbreak) would

most likely be an A/T mutation with a high probability of not being fixed, as G/C nu-

cleotides are typically retained over longer periods of time. The species with the most

similar distributions for α and β are all GC-rich, i.e. M. tuberculosis, P. aeruginosa, P.

putida and Brucella spp. However, even for these species, we find that absolute

Fig. 3 Density plots of the posterior distributions of estimated α (blue) and β (red) for each of 35 core
genomes. The red distribution represents GC→ AT mutation rates while the blue distribution AT→ GC
mutation rates. Each core genome consists of at least 10 strains of a distinct species, with the exception of
Brucella spp., which contains multiple species due to their close genomic similarity

Bohlin et al. Big Data Analytics             (2019) 4:5 Page 5 of 11



median/mode β estimates are substantially higher than α estimates. Indeed, Brucella

spp. has the lowest AT → GC mutation rates, together with Mycoplasma gallisepticum

and Yersinia pestis.

gcMOD is the nonlinear solution of a linear differential equation, thus requiring non-

linear statistical methods for the estimation of its parameters. If a likelihood function

can be produced, Bayesian inference is an easy and efficient way to do this. While we

previously used nonlinear regression to estimate α and β for gcMOD, it was sometimes

challenging to find appropriate starting values for these parameters such that the NLS

method converged. Once suitable starting values were identified, the NLS method con-

verged and provided estimates for both α and β. Random effects can be added to NLS

models with R packages like nlme [21]. Unfortunately, it can be difficult to get models

with a hierarchical structure of random effects (including gcMOD) to converge with

NLS-based methods.

By utilizing Markov chain Monte Carlo (MCMC) based Bayesian inference, on

the other hand, one can make several adjustments with regards to how the model

is specified and choose appropriate prior distributions for the parameters being es-

timated. Although gcMOD has a singularity point where α = β, posterior estimates

of these parameters are straightforward to obtain with Bayesian inference. The pa-

rameters estimated by nonlinear regression are assumed to follow an asymptotic

Student’s t-distribution. As discussed in the Results section, the 95% CI intervals

are somewhat smaller than the 95% CredI intervals obtained from Bayesian ana-

lysis. This is likely due to the fact that no assumptions are made about the types

of posterior distributions that are empirically estimated using MCMC simulations.

Testing the models with uninformative uniform priors did not change the conclu-

sion of the analysis or the distributions of the estimated parameters to any sub-

stantial degree.

A closer inspection of gcMOD’s mathematical properties reveals that setting muta-

tion rates for AT→ GC and GC → AT equal to one another reduces gcMOD to a lin-

ear equation. Despite this, the change in sbGC with respect to cgGC is still determined

by α = β; high rates increase the slope, while low rates decrease it (see Fig. 2, dashed

Fig. 4 The derivative of the SNP GC content model (gcMOD) (vertical axis) with respect to core genome GC
content plotted against core genome GC content (cgGC, vertical axis) for bulk estimated median α (AT→
GC mutation rates) and β (GC→ AT mutation rates) parameters for all 35 core genomes
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line). The different α and β estimates observed for all bacterial species suggest that AT

→ GC and GC → AT mutation rates are not necessarily equal, thereby indicating that

the alternative model, or null hypothesis, of a linear relationship between sbGC and

cgGC (described in Fig. 2) does not adequately explain the observed data.

Further inspection of gcMOD’s properties reveals that its derivative approaches 0

only as cgGC approaches infinity. This implies that gcMOD has a mathematical in-

verse (as outlined in the Methods section). A bit of algebra (also in the Methods

section) reveals that gcMOD predicts that cgGC may change abruptly with respect

to sbGC. Thus, core genome GC content, and therefore also genomic GC content,

may change quickly as α and β vary, provided there is strong enough selection, or

lack thereof, on sbGC. From our data, we see that the distributions of GC → AT

mutation rates are similar for all species, suggesting that cgGC can change rapidly

according to how often C/G nucleotides are retained. Indeed, as mentioned above,

Lind and Anderson [17] demonstrated a fast decrease in S. typhimurium GC con-

tent by knocking out MMR genes.

Conclusions
Using Bayesian inference, we find that across all 35 microbial core genomes examined,

GC → AT mutation rates (β) are remarkably similar to one another, while AT → GC

mutation rates (α) are considerably more heterogeneous. Only for the most GC-rich

species are the GC → AT and AT → GC mutation rate distributions similar in shape.

Median GC → AT mutation rates, however, are substantially higher than AT → GC

mutation rates at the species level, by a factor of roughly two on average. Based on esti-

mates of α and β, we speculate that G/C mutations are more often retained within bac-

terial genomes, possibly due to selection, and that A/T nucleotides enter the same

genomes more frequently but are less seldom fixed.

Inspection of gcMOD’s mathematical properties reveals that it is possible to obtain

its inverse function, and examination of this inverse indicates that cgGC, and thus total

genomic GC content, can potentially change rapidly. We also find that cgGC appears

to be strongly constrained by mutation rates. The above results taken together seem to

suggest that the presence of higher GC → AT than AT → GC mutation rates has a

profound effect on genomic GC content in bacteria.

Methods
Data preparation

All genetic material considered here was obtained from Genbank/NCBI [22] and is de-

scribed in a recent study [15]. That study also describes in detail how SNPs (e.g. sbGC)

are extracted, and all data used in the present study is available there (additional files 3

and 4 in [15]). Due to the stringency required for estimating SNPs, we only considered

closed genomes and required that each core genome was based on more than 10

strains. This resulted in a dataset consisting of a total of 716 different bacterial genomes

divided amongst 35 core genomes. With one exception, all the core genomes consist of

different species. The core genome of Brucella spp. also consists of different genera that

have strong genomic similarity to one another (see [15]).
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Sequences were prepared via the process described in [12, 15]. Briefly, core genomes

(containing coding and non-coding regions) were extracted using Harvesttools [23],

and corresponding core genome SNPs were retained with Gubbins v. 1.4.5 [24]. Sea-

view v. 4.5.4 was used to manually call sbGC and cgGC for all species and strains [25].

In the present study, we consider mean sbGC from all strains in each core genome,

finding that sbGC represents bulk SNP GC content of all strains in each species (see

additional information 4–6 in [15]). We also estimate mutation rates with respect to

each strain in each core genome (see Fig. 3 and figures. 1–2 in [15]). We created all fig-

ures with the free statistical software package R [26] and its library ggplot2 [27].

Derivation of gcMOD and estimation of parameters

We derived the mathematical model used in this study, gcMOD, according to the

guidelines set forth in [15]. In broad terms, gcMOD describes the linear difference be-

tween, on one hand, the change in sbGC (FGC(x)) with respect to cgGC (x), and on the

other, the AT → GC and GC → AT mutation rates (α and β, respectively). α and β are

taken to be to be scalars multiplied by sbGC. Written as an equation,

dFGC xð Þ
dx

¼ αFGC xð Þ þ β 1−FGC xð Þð Þ ð1Þ

We estimated α and β using Bayesian inference, with the genomic data described

above, which allowed us to model the mutation rate distributions of each core genome

with considerably more detail than the previously used NLS method. Bayesian inference

is performed by assuming prior distributions on the parameters (i.e. “expert” know-

ledge) of a particular model to be estimated. Next, to produce a posterior distribution,

the priors are combined with empirical data and the model’s given likelihood function.

The resulting posterior distributions represent data and prior driven model estimates

(i.e. α and β) for each core genome. More specifically, we fit two models using R 3.4.4

[26] and JAGS V.4.3.0 [28, 29]. The first was fitted for all species using the bulk sbGC/

cgGC for each core genome (i.e. one bulk/mean α and β parameter estimate for all spe-

cies; see Fig. 1 and Methods section). The second model was fitted strain-wise for each

of the 35 species (i.e. 35 different α and β parameter estimates, one for each core gen-

ome; see Fig. 3 and Additional file 1).

Priors for α and β were, for the bulk case, set to be normal with a normal hyperprior

for the mean (with − 1 and 1 set as the α and β hyperprior means, respectively). Preci-

sion was set to 1E-2 for both. Errors were assumed to be normally distributed with

gamma-distributed precision 1E-3 for both scale and shape parameters. One chain was

run for 1 million iterations, half of which were discarded as burn-in. Thinning was set

to n = 50, and so a total of 10,000 iterations were saved. Effective sample size (ESS) was

n = 4486 for α and n = 4407 for β. The hyperpriors for the means of both α and β were

set differently due to the singularity point at α = β. Starting values were also selected

differently for each parameter, namely α = − 1 and β = 1. The estimated posterior distri-

butions for α and β can be seen in Fig. 1. Median estimates were used in the model fit

seen in Fig. 2.

We set up the Bayesian model estimating α and β strain-wise with 5 chains, each run

for 5 million iterations (half discarded as burn-in) and thinning set to 100, resulting in

25,000 saved iterations. α and β were estimated for each of the 35 species, and ESS was
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at leastn = 7164 for all parameters. Priors and starting values (α = − 1, β = 1) were the

same as in the bulk model, but the means of the priors for α and β were not set using

hyperpriors; rather, they were assumed to be 0, but with different starting values. Preci-

sion was presumed to have gamma-distributed hyperpriors with both shape and scale

parameters set to 1E-3. Normal errors were again anticipated with gamma-distributed

precision 1E-3 for both scale and shape parameters.

Bayesian parameter estimates are reported with median values and 95% credible in-

tervals (CredI), while results based on standard frequentist methods (e.g. NLS) are re-

ported with means and 95% confidence intervals (CI).

Some mathematical properties of gcMOD

It was shown in [15] that gcMOD (1) can be written as

FGC xð Þ ¼ β
α−β

e α−βð Þx−1
� �

ð2Þ

which is subject to the constraints

0 < FGC xð Þ < 1 and 0 < x < 1:

Using the chain rule, we see that (2) has the derivative

F′GC xð Þ ¼ βe α−βð Þx ð3Þ

Since |β| > |α|, the derivative will always be positive and approach zero as x→∞.

This implies, by the inverse function theorem, that (2) has an inverse, which after a bit

of algebra can be expressed as

Fig. 5 gcMOD’s inverse Core genome GC content (cgGC, vertical axis) plotted against SNP GC content
(sbGC, horizontal axis), together with the SNP GC content model’s (gcMOD) inverse function (dark blue
points) for estimated median α (AT→ GC mutation rates) and β (GC→AT mutation rates). Except for
gcMOD’s inverse, the dots are colored according to phylogenetic group membership stated in the legend
to the right
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x ¼ HGC yð Þ ¼ 1
α−β

log
αy−β y−1ð Þ

β

� �
ð4Þ

Furthermore, closer inspection of (2) at the singularity α = β reveals that.

FGC xð Þ ¼ β
α−β

e α−βð Þx−1
� �

¼ β
α−β

1þ α−βð Þxþ α−βð Þ2x2
2!

þ⋯þ α−βð Þnxn
n!

þ⋯−1

 !

¼ β
1

α−β
þ xþ α−βð Þ1x2

2!
þ⋯þ α−βð Þn−1xn

n!
þ⋯−

1
α−β

 !

¼ β xþ α−βð Þ1x2
2!

þ⋯þ α−βð Þn−1xn
n!

þ⋯

 !
ð5Þ

It should now be clear that lim
α→β

FGCðxÞ ¼ βx . For equal mutation rates α = β, (2) is

restricted by 0 < βx < 1, which implies that cgGC is subject to the condition x = 1/β,

0 < x < 1, β ≠ 0.

Additional file

Additional file 1: Output from JAGS run of α and β estimates for each of the 35 species/core genomes. (TXT 6 kb)
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