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Abstract

Background: With the prominent growth of power market, real-time electricity price
has become a trend in smart grid as it enables moderation of power consumption of
customers. Accurate forecast of real-time price (RTP) has much influence on customers’
behaviors, such as better scheduling operating time of domestic appliances in order to
maximize benefit. In this paper, an innovative hybrid RTP forecasting model considering
linear and non-linear behaviors within input data, is proposed to forecast the short-term
electricity prices in smart grid.

Results: The effectiveness of the proposed hybrid forecasting model is verified by
numerical results in terms of forecasting performance evaluations. The results clearly
demonstrate that our approach is effective in RTP forecasting with a high accuracy. The
mean absolute percentage error (MAPE) is approximate to 3.5% and it also significantly
outperforms the existing models.

Conclusion: Based on the achieved results, we can conclude that the proposed
hybrid model is an accurate and efficient tool in short-term RTP forecasting and it is
potentially effective to a variety of forecasting tasks.

Keywords: Power market, RTP forecasting, Hybrid model, Short-term electricity prices,
Smart grid

Background

Real-time price (RTP), also referred to as dynamic tariff or spot price which was first
introduced in the 1980s [1], nowadays is tentatively applied to the power system in many
countries including the US, Australia, etc. The real-time price tariff is an inexorable trend
in next generation of power system reforming [2, 3]. Unlike regulated markets which the
companies determine prices independently, electricity prices are significantly dependent
on a supply—demand relationship in a deregulated market. Generally, RTP offers higher
prices during peak load demand periods and provides lower prices during off-peak load
demand periods [4, 5]. In consideration of the manufacturing cost in different load levels,
the dynamic tariff is a potential load management method for properly allocating incre-
mental prices of electricity consumption to the time delivery, thus ensuring the overall
economic rationality [6].

In addition, RTP tariff is broadly utilized as a basic control signal to support the demand
response management (DRM) which is an excellent long-term solution to improving
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energy efficiency and reducing wastage [7, 8]. On the one hand, RTP tariff is benefit to
power grid as it offers specific price instructions for participants to average the power
usage at different time so that alleviates the load burden of power grid especially in
peak demand time. On the other hand, such an electricity tariff encourages consumption
by price reduction during periods of abundance and allows customers to have multiple
choices to determine the time of electricity consumption. The participants in electricity
market can regulate the operating time of electrical devices automatically or manually
during high-price periods and gain the benefits from low-price periods via DRM, thus
achieving the aims of reducing energy usage and saving electric bills for themselves
[5, 9-11]. Therefore, the research on RTP tariff is of interest to researchers, production
companies, investors, independent market operators and large industrial consumers in
recent years [12, 13].

Moreover, the real-time price is normally provided with the instantaneous property.
Thus, it is a necessity to forecast RTP in advance in this competitive electricity market
for electricity consumers and power suppliers in scheduling their operations and control-
ling the price risks. Over last two decades, much research has been conducted on RTP
forecasting. In summary, the existing methods can be classified into two main categories:
machine learning based methods like SVM (Support Vector Machine) and ANN (artifi-
cial neural network) [14—16], and statistical time series based methods like ARIMA (auto
regressive integrated moving average) model and GARCH (generalized auto regressive
conditional heteroskedasticity) model [17, 18].

Specifically, in [15], the authors proposed methods including hybrid networks of
self-organized map (SOM) and support-vector machine (SVM) to predict short-term
electricity price. With the trained network, one can predict the future hourly elec-
tricity prices in one day ahead. To confirm its feasibility, the proposed model had
been trained and tested on the data of historical energy prices from the New Eng-
land electricity market. In addition, in [16], a sensitivity analysis of similar days (SD)
parameters to rise the accuracy of ANN model and SD-based short-term price fore-
casting model were presented. In order to train the network, a large sum of data were
used. The model had been tested in Pennsylvania-New Jersey-Maryland (PJM) elec-
tricity market. The results showed that the mean absolute percentage error (MAPE)
was around 11%. Furthermore, in [17], the authors introduced a method to predict
next-day electricity prices based on the ARIMA methodology which was used to
analyze the time series problem. The ARIMA model was tested in California elec-
tricity market. More than 30-day historical data samples were required to train the
model.

However, the shared limitation of the mentioned studies above is that a large
number of historical RTP data is required for training the model. The insuffi-
cient training data causes considerable estimation errors. Hence, our research in the
paper mainly concentrates on building an effective estimation model for electricity
price forecasting in smart grid with high accuracy by using limited sets of histor-
ical data. In order to evaluate the performance of methods, numerical error mea-
sures such as mean absolute error (MAE), means square error (MSE), root-mean
square error (RMSE) and mean absolute percentage error (MAPE) are also used in
this work.

The main contributions of this work can be summarized as follows.
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(1) A hybrid RTP forecasting model which is a consolidation of least-square (LS)
fitting model, grey prediction (GP) model and artificial neural network (ANN)), is
proposed. The LS fitting model considers the linear behavior of the time series
data and the GP model considers the non-linear behavior. However, the ANN
model is an optional forecasting procedure and used in the error optimization.

(2)  Less historical RTP data is required, thereby improving the practicability. Since
both LS and GP models can be established on the basis of a small number of data
sets, the proposed hybrid forecasting model is easy to install and more practical
compared with the previous methods.

(3)  The accuracy of time series RTP forecasting increases by using the hybrid model.
The effectiveness of the hybrid forecasting model is verified by numerical results
in terms of MAE, MSE, RMSE and MAPE evaluations. The results indicate that
our method is an accurate and efficient tool to forecast the day-ahead RTP and it
also significantly outperforms the previous methods.

To the best of our knowledge, this is the first work of combining above pieces together
in RTP forecasting.

Method

This section introduces the methodology which includes the architecture of the proposed
forecast strategy and the specific description of the proposed hybrid forecasting model in
this work.

Architecture of the proposed forecasting strategy

Considering time scales, the RTP forecasting is classified into ultra-short term, short
term, medium term and long term [19]. The Ultra-short term is from several minutes to
1 h ahead forecasting. The short term means the forecasting values from 1 h to several
hours. From a few hours to 1 week ahead forecasting is defined as the medium term and
beyond that it is the long term forecasting. However, we focus on the day (24 h) ahead
RTP forecasting with a resolution of 0.5 h in this work, which belongs to the short term
forecasting.

Figure 1 shows the historical RTP data over 5 historical day samples which is provided
by Australia Energy Market Operator (AEMO) [20]. The time series dynamic electricity
prices vary dependent on load demand at different time periods. Based on the varia-
tions of historical RTP samples in Fig. 1, electricity prices exhibit a prominent regularity
apparently and it consists of linear and non-linear information along with the prices vary-
ing. According to these, the characteristics of the linear and non-liner properties of time
series data have to be incorporated into the forecasting model. Therefore, the proposed
forecasting model can be formulated as:

Pi=L;+N;+Ef (1)

where P; is the forecasting RTP at time ¢. L; and N; represent the estimations of linear
behavior and non-linear behavior, respectively, of the input data. Additionally, E} which
is an optional forecasting component, denotes the error optimization procedure.

In order to present the architecture of the proposed hybrid forecasting model, Fig. 2
illustrates the flow chart of forecasting day-ahead real-time electricity prices based on
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Fig. 1 Historical RTP over 5 historical day samples (120 h)

several days’ historical RTP data. Specifically, the historical data is input as the basis to
establish the model. Then, the linear behavior of the data are estimated by using the LS
fitting model. Afterwards, the GP model is applied in the estimation of the non-linear
behavior within the data. After that, the ANN model based error optimization procedure
will be determined if it is necessary to be executed on this stage in accordance with the
spot error rate (ER) of the initial forecasting result. The ANN model will be executed to
improve the specific forecasting accuracy if the spot ER exceeds the maximum tolera-
ble ER. Finally, the forecasted day-ahead RTP coming from the integrated model is the
desired output in this study.

In next subsections, the specific descriptions of the relevant forecasting components in
the hybrid model are introduced in details.

Least squares fitting model for linear behavior forecasting

Based on Eq. (1), the LS fitting model is employed to obtain the linear behavior L; within
the input data. The least square fitting for data is a standard approach in regression
analysis to the approximate solution of over determined systems. It is one of the fitting
algorithms [21-24]. On the stage of linear behavior forecasting, the LS fitting model can

Input LS fitting model GP model ANN model
:
1
1
1
1
—————————————— 1
Mandatory
Output Integrated model ~ ===== Optional

Fig. 2 The flow chart of forecasting day-ahead real-time electricity prices
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be used to build a fitting function to express the main stream variation among the histor-
ical data. Assume the input data set H consisting of #» = N days’ historical RTP data, H
can be formulated as:

H = {Dy,D»,..,D,} (2)

However, the historical RTP of a day can be treated as a number of discrete values with an
interval. In this study, a time interval of 0.5 h is adopted, which means ¢ = 48 fixed values
are included in an individual day sample. Hence, D,, is represented as:

Dn =b’n,1;yn,2, m»yn,t] (3)

In addition, the fitting function L(¢) is taken to model the main stream variation in
the linear behavior estimation. However, the general formats of the fitting function
include Fourier, Gaussian, polynomial, sum of sine, etc. and they can be formulated in
Egs. (4) - (7), respectively, as follows.

d <_ (x;hl- )2>
Gaussian format: f(x) = Z aj-e ! (4)
i=1
d
Fourier format: f(x) = Z ai-cos(i-w-x)+b;-sin(i-w - x) (5)
i=0
d .
Polynomial format: f(x) = Z pi - % (6)
i=0
d
Sum of sine format: f(x) = Z a; - sin(b; - x + ¢;) 7)
i=1

where d € N is the degree of the adopted function. Additionally, a;, b;, c;, w; and p; are
undetermined constant parameters in model. Although all the proposed fitting function
formats are effective in modeling the linear behavior within the data, the Fourier format is
adopted in this study due to its better fitting performance. Therefore, the objective func-
tion on this stage can be formulated as determining a group of appropriate parameters
(ai, b; and w;) to minimize the total square errors J. The objective function is presented in

Eq. (8).
N 48
argmin/ = > " (L — yns)’ ®)
abew n=1 t=1

On the one side, a higher value of the fitting degree d leads to a better performance of
the estimation when J is in a reasonable range. On the other hand, it results more com-
plexity of the calculation and more CPU wastage. Therefore, selecting an appropriate
fitting degree in the fitting model is significant and may lead to a better linear behavior
estimation performance.

Table 1 presents the total square errors J with different values of fitting degree which
range from 1 to 7. Apparently, when d € [1, 3], J decreases quickly with the fitting degree
increasing. However, /] becomes stable when d > 3. For example, there is only |J;—5 —
Ji—6| = [2.995 — 2.981| = 0.015 differences between the cases d = 5 and d = 6 based on
the obtained results in Table 1.
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Table 1 Total square errors with different values of fitting degree; d = 1 to 7 are evaluated
d 1 2 3 4 5 6 7
JX10° 5.601 4.152 3223 2.988 2.995 2.981 2950

Although different fitting degree values can work in the linear behavior estimation on
this stage, considering the estimation accuracy and efficiency, and avoiding the over fit-
ting, d = 4 is taken as a proper fitting degree in this study. Afterwards, the relevant
parameters can be determined as in Table 2.

Grey prediction model for non-linear behavior forecasting

The second stage in the proposed hybrid RTP forecasting model is to estimate N; which
denotes the non-linear behavior within the input data. Obviously, the non-linear informa-
tion within the data is included in the forecasting errors after using the LS fitting model.
Thus, the non-linear behavior within the historical data at time ¢ can be expressed in
Eq. (9) and the initial records are used to estimate the next record (D,+1, — L¢) by using
the GP model.

Mt = {Dl,t - LL‘,DZ,t - Lt; '")Dn,t - Lt} (9)

The GP model or GM(1,1) was first proposed to deal with the data in grey system. It
is able to analyze system that includes insufficient information and unapparent relation-
ship [25-27]. Hence, the GP model is often used in predicting data in non-linear system
based on limited information. It transforms the forms of the irregular discrete sequences
and displays the potential regularities within the sequences. Transforming the forms of
the sequences can make the properties of stochastic and randomness get weaker thereby
turning irregular sequences to regular ones [28—30]. Since only a few non-linear data pro-
ceeded from LS fitting model are used, it is quite appropriate to employ the GP model to
estimate the non-linear behavior within the input data on this stage.

The GP model is established by using generalized series data. The primitive sequence
data is defined as X(¥ and it can be presented as:

x© — {x(o)(l),x(o) 2), ,,,,x(o) (l’l)} (10)

where ¥ (n) = D,,; — L, and @ (1) > 0. However, if any ¥ (1) < 0 in the primitive
sequence, all the candidates in the sequence have to be improved until V@ () > 0.
Afterwards, the first accumulated generating data XV can be obtained in Eq. (11).

X0 — [x<1>(1),x<”(2),...,x(”(n)} a
where
() = Zx(O) () (12)
i—1

Table 2 Values of the parameters in L;. Fourier format is selected and d = 4

Parameters aog a as as ay by by bs by w
Values 32.640 0.570 2.153 0.022 -0.831 -2.950 -4.158 1.738 1.185 0.289
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In addition, Z which is determined by X, is defined as the background factors and
ZW can be presented as:

7O = {z<1>(1),z<1>(2),..., z<1>(n)} (13)
where
2P ) = % [x(l)(n) + P — 1)] (14)

For example, when ¢ = 26 in our case, the initial sequence (after data preprocessing)
is XO — {6.5,7.9,11.1,11.4,13.5} as shown in Fig. 3a. Then, the first accumulated gen-
erating data X' can be calculated as X'V = {6.5,14.4,25.5,36.9,50.4} as shown in
Fig. 3b. Obviously, there are not any prominent regularities between the numbers in X(®.
However, after first accumulated generating operation (AGO) towards to X, the new
sequence X1 is provided with the quasi exponential property (otherwise, the second
AGO will be executed towards to X1). Therefore, X’ can be regarded as being satisfied
with the first order ordinary differential equation which is shown in (15).

—— +axW =y (15)

- -
- %)
T T
1 1

Value of () (n)

5 1 1 1
0 1 2 3 4

Index n in X©

o
(]

(o3

n w e (o)) [o2]
o o o o o
T T T T
1 1 1 1
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-

o
T
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Fig. 3 Examples of X© and X(. Case t = 26 is adopted as an example. a Example data in X©@; b Example
datain X

-
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6
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where a is treated as a development coefficient that describes the increasing speed of
numbers in X® and u is an endogenous control coefficient in system. The parameters
U =[a, u]” can be determined in Eq. (16).

-1
u= (BTB) BTy (16)
where Yisa (n — 1) x 1 matrix and Bis a (n — 1) x 2 matrix. ¥ and B can be presented as:
x©(2) —z0(2) 1
x©(3) —z1@3) 1
Y = . and B =
x© (n) -2V m) 1

According to these, Eq. (15) can be resolved by using the obtained parameters a and u,
so that the forecasting formula of X® can be denoted as shown in Eq. (17).

e+ = (xV1) - 2 ek 4 2 (17)
a a

Based on Eq. (17), when n = 1,2,..,N — 1, V(1 + 1) is a fixed value. When n > N,
#D(n + 1) is a predicted value of XV, Afterwards, the predicted formula of X© can
be achieved through the inverse accumulated generating operation (IAGO) as shown in
Eq. (18).

O +1) =P m+1) - )

18
=(1—¢% [x(o)(l) — E] e~ (18)
a

According to Eq. (18), when n = N, @ (n + 1) is the objective forecasting value. After
that, the GP model can be utilized periodically to achieve forecasting values on all time
spot t. Furthermore, the forecasting result is the combination of the linear behavior and
the non-linear behavior within the input data, which can be described in Fig. 4. In general,
the variation of the obtained RTP by using LS model+GP model is in line with actual RTP
in an overview. The result indicates that the error rates are lower than 10% at most of

50 T
— Observed actual RTP

— Forecasted RTP (LS model+GP model)

45

Price ($/MWh)

1 1 1
0 4 8 12 16 20 24
Hour

Fig. 4 Real-time electricity prices forecasting result based on LS model+GP model
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the time, particularly between 12:30 - 22:00 (lower than 5%). Nonetheless, the error rates
are higher than 10% during time period 6:30 - 8:30, as unexpected. These unexpected
errors may be caused by the defects of the current forecasting models. Since limited data
sets were used for improving the practicality in the current models, the random error
increases when there are great differences among the input data sets. Therefore, in order
to improve the forecasting accuracy at specific time slots based on the initial forecasting
result, the ANN model based error optimization procedure is required.

Artificial neural network for error optimization

The artificial neural network (ANN) is also a non-linear modeling where any prior knowl-
edge of relationship between input and output is needed [31]. It gives great results for
forecasting problems [16]. To establish the model, only sufficient data is required to
assimilate the connection between inputs and outputs. The main parameters of ANN
model are the number of the input vectors, the number of layers and the number of neu-
rons in each layer [32—34]. However, the large and sudden spikes in the input data will
lead to less accuracy in the output using ANN. In this study, the back propagation (BP)
algorithm is utilized to train the ANN model.

Figure 5 shows the topography of a typical 3-layer back propagation neural network
[35, 36]. A 3-layer back propagation neural network is a typical multiple-layer network
and it includes input layer (LA), hidden layer (LB), and output layer (LC). There are no
connections between nodes that belong to the same layer. LA has m nodes that corre-
spond to the m inputs of the network. LC consists of # nodes that correspond to the #
output of the network. The node number of LB can be varied to fit the task.

Define W;, as the connection weight between node 4; of the LA layer and node b, of
the LB layer. Similarly, let V;; be the connection weight between node b, of the LB layer
and node ¢; of the LC layer. Set T, and 6; as the bias of node b, of the LB layer and the
bias of node ¢; of the LC layer, respectively. Then the output function of the LB layer node

_— Information forward propagation _—

Input layer Hidden layer Output layer

— Errors back propagation —

Fig. 5 Topography of typical 3-layer back propagation neural networks
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should be:
m
by =f (Z Wi - a; — T,) (r=1,2..,u) (19)
i=1
The output function of the LC layer node should be:
u
G=f (Z Vi by — 9,-) G=1,2.,n) (20)
r=1
where f(x) is a sigmoid function and it can be expressed as:
1
= 21
f@ = 17— (1)

In addition, the BP learning algorithm which is a typical error-revised learning algorithm
is used to learn and store knowledge in the 3-layer back propagation neural networks.

The learning procedures can be illustrated as follows.

(1)  Initialize the variables Wy, T}, V;; and 6; with small random values.
(2)  For each model pair (A(k), C(k)) (k=1,2,.., p), take the following steps.

e Input the values of AKX at layer LA, then calculate b, and ¢j by Egs. (19) and

(20).
¢ Calculate the bias d; of the desired value and calculate the value c; of the layer
LC nodes and let
d/ = Cj - (1 — C/) - (C](»k) — C/> (22)
e Back propagate the errors to the layer LB nodes and let
n
er=b-(1=b)- > Vy-d (23)
j=1
¢ Adjust the connection weights V;; and the bias of the layer LC nodes 6;:
Vij=Vi+a-di+-AV) (24)
9j=9j+a~d,*—|-ﬂ-A6‘j, (25)

where A Vr/j and 9}«/ are the adjusting values of the previous learning loop. « is
the learning ratio and 0 < @ < 1. B is the momentum factor.
e Adjust the connection weights W, and the bias of the layer LB nodes T}:

‘Vir:‘vir‘i‘a'er‘i‘lg'A‘Vi/r (26)

T, =T+ e+ p- AT, (27)

where AW/, and AT are the adjusting values of the previous learning loop.
(3)  Repeat step (2), until d; becomes adequately small.

In accordance with the analysis in previous sections, the ANN model is used on this
stage to improve the accuracy of the RTP forecasting further in particular time slots, such
as between 6:30 - 8:30 as shown in Fig. 4. In this case, 2 hidden layers with 20 and 40
neurons are designed and 10-day historical data is adopted. In next section, a number of
simulations are carried out to prove the effectiveness of the proposed hybrid model and
the forecasting quality is also evaluated in terms of some evaluation criteria.
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Results

This section demonstrates the real-time electricity prices forecasting results by using the
proposed hybrid forecasting model. Limited data sets (5 days) of the historical RTP with
a time interval of 0.5 h in Australia is adopted. The achieved results are also compared
with the previous methods (e.g., ARIMA model, independent BP-ANN model, etc.) in
this work.

In addition, a number of evaluation criteria including MAE, MSE, RMSE and MAPE
[37-39] are proposed to evaluate the forecasting performances. To begin with, we define
x as the forecasting values of a model, ref as the observed true values and ¢ = 48 which
means 48 points are required to predict within a day. Hence, the mathematical formula-
tions of MAE, MSE, RMSE and MAPE can be expressed in Egs. (28) - (31), respectively.

t

MAE = % . Z |ref; — xi (28)
i=1
1 < )
MSE =~ - ;(refi — %) (29)
1 t
RMSE = | - ;(ref,- — x;)2 (30)
t
MAPE = % > ref;eﬁ Xi (31)

i=1

Figure 6 shows the RTP forecasting results comparison between the proposed hybrid
model and some typical models. According to the obtained results, it is obvious that all
three compared models, i.e., the hybrid model, the ARIMA model and the BP-ANN model
are able to accomplish the task of forecasting RTP in advance. The forecasting price varia-
tions are in line with the observed actual RTP in general. Additionally, the forecasting RTP
by the hybrid model is slightly better than the other two models on the basis of the results.

55 T T
—— Observed actual RTP
sob e Forecasted RTP (hybrid model)
------- Forecasted RTP (ARIMA model)
45 F Forecasted RTP (BP-ANN model)
= 40
=
@ 35
3]
‘= 30
[a B
25
20
15 1 1 1 1 1
0 4 8 12 16 20 24
Hour
Fig. 6 RTP forecasting results comparison between models
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However, comparing the RTP variations in Figs. 4 and 6, it is apparent that the forecast-
ing errors are significant reduced at the time period 6:30 - 8:30, due to the contribution
of the BP-ANN model in the error optimization procedure.

In addition to these, the RTP forecasting quality evaluation comparison between the
hybrid model and different models in state-of-the-arts are also presented in Table 3. Based
on the achieved results, the proposed hybrid model performs best in forecasting quality
evaluation in an overview, which confirms the advantages of our approach. Specifically,
the MAE, MSE, RMSE and MAPE of the hybrid model are 1.06, 1.72, 1.31 and 3.38%,
respectively, which are the lowest among all models. However, the ARIMA model per-
forms the worst in the MAE evaluation and the independent LS model performs worst in
MSE, RMSE and MAPE evaluations.

Discussion

The hybrid model analyzes the input data in views of linear behavior, non-linear behav-
ior and errors optimization within the data. The advantage of our approach is that the
hybrid model is more robust in dealing with forecasting tasks based on insufficient
data compared with the traditional models such as ARIMA which needs a large num-
ber of historical data for training. The RTP forecasting quality evaluation results in
Table 3 also indicate that the ARIMA model is not effective in the case with limited
input data. In addition, the individual LS model did not perform well in this case, as
the LS model only extracts the main stream within the input data. Therefore, using a LS
model independently to forecast the RTP will lead to considerable errors as expected.
It is much more interesting to see that the LS model cooperated with the GP model
performs a bit worse than the independent GP model in overall evaluation. This is
because the combined model (LS model + GP model) perform not well in a specific time
period, i.e., 6:30 to 8:30 in this case, so that the errors improved significantly in overall,
although it has higher forecasting accuracies in other time periods compared with the
GP model.

However, given a group of historical data, there are several forecasting models can
be used and each model may be able to complete the task of forecasting with different
accuracies. After a great number of tests, we realize that the forecasting performance is
crucially dependent on both selecting an appropriate model and the data correlations. A
forecasting model works well to one group of data, but can be not effective for another
group of data. Therefore, a hybrid forecasting model is generally more efficient than an
independent model.

Table 3 RTP Forecasting quality evaluation comparison between models

Evaluation criteria

Models ;
MAE ($/MWh) MSE ($/MWh) RMSE ($/MWh) 2 MAPE (%)

ARIMA model 261 9.25 3.04 8.29

LS model 2.52 941 3.07 851

GP model 1.35 3.01 1.74 4.29
LS+GP models 153 533 2.31 4.65
BP-ANN model 1.49 3.50 1.87 4.69
Hybrid model 1.06 1.72 1.31 3.38

The best performance metrics are marked in bold
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Conclusion

In this paper, a hybrid model consisting of LS model, GP model and BP-ANN model,
is proposed to forecast the day-ahead real-time prices based on limited historical data.
The achieved forecasting performance evaluation results clearly demonstrate that our
approach is an accurate and efficient tool in RTP forecasting and it also significantly out-
performs the previous forecasting models. As RTP tariff is a trend for smart grid in next
decade, the theories in this paper have bright prospects not only in RTP forecasting, but
also in applications in other industrial fields, such load forecasting, wind forecasting, GDP
forecasting, etc.
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