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Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common brain
disorders among children and is very difficult to diagnose using current methods.
Similarly other mental disorders are subject to the same systematic errors with
sufficient evidence of diagnostic errors as well as over-prescribing of drugs due to
misdiagnosis . For most mental health disorders there is no quantitative method that
will inform the presence or absence of a given mental disorder. We argue that
definitive and quantitative diagnostic tests are necessary for ADHD and other mental
disorders. To this end, big data Functional Magnetic Resonance Imaging (fMRI) and
machine learning algorithms can be instrumental in changing the way psychiatric
disorders are diagnosed and treated. We briefly discuss our recent research efforts and
future directions for a quantitative gold standard tests for psychiatric diagnosis.
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Current and future research directions
It is widely known that defining and diagnosing mental disorders is a difficult process
due to overlapping nature of symptoms, and lack of a biological test that can serve as
a definite and quantified gold standard [1]. To this end, Attention Deficit Hyperactivity
Disorder (ADHD) is one of the most common brain disorders among children and relies
on the identification of abnormal mental characteristics. ADHD is notoriously difficult
to diagnose, especially in children, with sufficient evidence of diagnostic errors as well
as over-prescribing of drugs due to misdiagnosis [2]. The current psychiatric diagnosis
is based purely on behavioural observation (DSM-5/ICD-10) but lacks biological and/or
genetic validity and is prone to errors [1]. For most mental health disorders definitive and
quantitative diagnostic tests which can detect the presence or the absence of a specific
psychiatric disorder(s) are non-existent [1, 3].
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for study-

ing the brain functional activities and is based on BloodOxygen Level Dependent (BOLD)
contrast [4]. During the fMRI scan, a series of images are taken using a scanner while
the subject to a specific task such as resting, or doing various pre-determined tasks. The

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41044-018-0033-0&domain=pdf
mailto: fahad.saeed@wmich.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Saeed Big Data Analytics  (2018) 3:7 Page 2 of 3

result of brain scanning is a series of low resolution images over time which shows the
activity of the brain and can allow us to develop a highly informative brain connectome.
There is evidence that ADHD, Bipolar Disorder (BD) and Schizophrenia have character-
istics that differ in the regional and global connectivity of the brain when studied under
resting state Functional Magnetic Resonance Imaging or fMRI [1, 3, 5].
As data-scientists, along with our colleagues from psychiatry and neuroscience, the

overarching question that we have been posing is as follows: Can we diagnose a person
with ADHD (or other mental disorders) using fMRI scans using techniques from machine
learning and novel algorithmic designs?. If possible, such a test will provide a definitive
quantitative ’gold standard’ test for diagnosing ADHD and other disorders.
In this endeavor machine-learning, especially deep-learning algorithms, have the

potential to show exceptional promise [6–9]. To this end, we have been successful in
developing a machine learning algorithm that allow us to classify fMRI ADHD scans from
normal healthy brain scans without using any demographic information. Our recently
proposed technique is based on computing similarity between two multivariate time
series along with k-Nearest-Neighbor classifier. We designed a model selection scheme
called J-Eros which is able to pick the optimum value of k for k-Nearest-Neighbor from
the training data. Our results show a 20% increase in accuracy, with superior sensitivity
and specificity, as compared to the state of the art algorithms in classifying ADHD using
open-data ADHD-200 that is available to the community [10]. We expect to introduce
deep-learning based machine learning algorithms which will help us quantify psychiatric
evaluation for ADHD, Bipolar Disorder, and Schizophrenia.
Compute time for analyzing big fMRI data is a bottleneck in introducing such tech-

niques in a clinical setting [11, 12]. High performance computing (HPC) techniques will
help ease the computational load in big fMRI data analysis for clinical and diagnostic
purposes [13]. Among parallel computing techniques, Graphic Processing Unit (GPU)
architecture provides a high degree of parallelism while being less expensive. Therefore,
the focus of our research has been towards designing GPU based parallel computing algo-
rithms for analyzing big fMRI data and considering pairwise relations between all voxels
(the smallest cubic unit in fMRI data) without spatial or temporal constraint. In this way,
voxels from different regions of brain which have similar spatiotemporal behaviour could
be placed in the same cluster. The resulting clusters are regions which are functionally
homogeneous and would give a more system-wide view of brain connectivity. This will
allow neuroscientists to study the regional and global connectivity of the brain in much
fine-grained detail than is currently possible. To this end, we have recently presented a
GPU based strategy that allows us to calculate the functional connectivity using Pearson
correlations for big fMRI data [4].
Such quantified psychiatric evaluations based on data science, big data, and algorithms

can increase the accuracy of diagnosis, prognosis, and treatments of difficult to assess
mental disorders. It will be an immense service for mankind if we are successful in devel-
oping a quantitative framework for big fMRI data to identify brain disorders from healthy
brains. These algorithms will play a vital role in peering into mental disorders and will be
akin to the role that microscope played for diagnostic medicine in the early 19th century.
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