
Big Data AnalyticsYan et al. Big Data Analytics (2016) 1:7
DOI 10.1186/s41044-016-0007-z

RESEARCH Open Access

Semantic indexing with deep learning: a
case study
Yan Yan1*, Xu-Cheng Yin2, Bo-Wen Zhang2, Chun Yang2 and Hong-Wei Hao2

*Correspondence:
yanyanustb@126.com
1School of Mechanical Electronic
and Information Engineering, China
University of Mining and
Technology, Beijing 100083, China
Full list of author information is
available at the end of the article

Abstract

Background: Deep learning techniques, particularly convolutional neural networks
(CNNs), are poised for widespread application in the research fields of information
retrieval and natural language processing. However, there are very few publications
addressing semantic indexing with deep learning. In particular, there are few studies of
semantic indexing in biomedical literature because of several specific challenges
including a vast amount of semantic labels from automatically annotating MeSH terms
for MEDLINE citations and a massive collection with only the title and abstract
information.

Results: In this paper, we introduce a novel CNN-based semantic indexing method for
biomedical abstract document collections. First, we adaptively group word2vec
categories into (coarse) subsets by clustering. Next, we construct a high-dimensional
space representation withWikipedia category extension, which contains more semantic
information than bag-of-words. Thereafter, we design a hierarchical CNN indexing
architecture for learning documents from a coarse- to fine-grained level with several
multi-label training techniques. We believe that the low-dimensional representation of
the output layer in CNNs should be more compact and effective. Finally, we perform
comparative experiments for semantic indexing of biomedical abstract documents.

Conclusion: Experimental results on the MEDLINE dataset show that our model
achieves superior performance than conventional models.

Keywords: Deep learning, Semantic indexing, Convolutional neural networks,
Biomedical documents

Background
Over the last several years, deep neural networks (DNNs) [9] have emerged as a powerful
machine learning technology that has achieved tremendous success in image classifi-
cation, speech recognition, and natural language processing (NLP) tasks by showing
significant gains over state-of-the-art shallow learning. In particular, convolutional neural
networks (CNNs) [15] are a flexible neural network framework that can be used to reduce
variations and exploit spatial correlations using weight sharing and local connectivity.
Recently, CNNs have become more popular than fully-connected DNNs.
Semantic indexing [19, 21, 23] occupies an important position in document classifi-

cation and information retrieval. Document ranking largely depends on measuring the
semantic similarity of query-document pairs. Usually the query and the document must
be mapped in a low-dimensional space and effectively learning this representation is a

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41044-016-0007-z-x&domain=pdf
mailto: yanyanustb@126.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yan et al. Big Data Analytics (2016) 1:7 Page 2 of 13

crucial step. Moreover, with the sheer size of data available today, big data information
brings great opportunities and potential for various sectors [3, 24]. DNNs have shown
their superiority in NLP and deep learning is beginning to play a key role in providing big
data predictive analytics solutions. Following some successful applications in this domain,
CNNs have also been explored for semantic indexing.
Recently, researchers have applied CNNs to several NLP tasks and achieved significant

progress. For example, Zeng et al. used CNNs for relation classification [26] and Dos
Santos utilized CNNs for semantic analysis of text [6]. In contrast, the field of biomedicine
MeSH (Medical Subject Heading) indexing poses several specific challenges. For example,
there are many professional terms (multi-labels), only the title and abstract informa-
tion of documents is provided, and there is a high correlation between different labels.
Hence, little research has been published on this topic. In this paper, we use deep learn-
ing and explore ways to apply CNNs to biomedical abstract indexing. We also provide a
comparison with several state-of-the-art methods.
We offer three major contributions in this paper. First, to the best of our knowledge,

we are the first to present a case study of biomedical document semantic indexing using
CNNs. Second, we design a hierarchical CNN-based indexing framework (Hierarchical
Classification, HC) and use a suitable loss function for CNN training. We conduct the
multi-label classification using a coarse-to-fine approach. Third, we use the MetaMap
(in the biomedical field) keywords together with the Wikipedia category to enrich the
document representation. Empirical results verify that this improved representation is
more compact than bag-of-words (BOW).

Related work
Generally speaking, there are two major directions of research in the semantic indexing
domain. On the one hand, shallow learning is the most primitive and direct method for
matching correlated documents by comparing keywords. The BOW and term frequency-
inverse document frequency (TF-IDF) models only contain information about word
frequency, and in most cases the corresponding lexical match is very imprecise because
a concept can be described with different words or different language modes. Several
learning methods have been attempted for semantic indexing, such as latent semantic
indexing (LSI), latent Dirichlet allocation (LDA)and probabilistic latent semantic index-
ing (pLSI) [2, 4, 11]. These methods are all based on topic models that use SVD to
operate on a document vector matrix and remap it to a semantic space (always with a
low-dimensional representation), where each dimension represents a “latent topic”. How-
ever, these methods use linear function computation and are unsupervised, which makes
them very limited for semantic representation. Recently, some researchers have attempted
to use supervised techniques to learn document representation. Typically, supervised
LDA [16] adds a response variable to LDA by generalizing linear models with respect to
the EM algorithm associated with each document, and trains the model with the category
or labels which is more fit to predict response values for new documents. However, the
query and the document are always processed independently in this supervised approach.
Supervised semantic indexing (SSI) [1] focuses on pairwise preferences, which account

for the correlations between words (queries and target documents), and then uses learn-
ing to rank and choose the best combination of features from a large feature set generated
from all word pairs. To deal with the large feature space, memory, speed, and capacity

Yan et al. Big Data Analytics (2016) 1:7 Page 3 of 13

control issues, a low-rank representation is used in the SSI model. Although this feature
embedding can improve document-document and query-document retrieval, the linear
word embedding is not sufficient for capturing the document semantics.
On the other hand, deep learning techniques have also been investigated for seman-

tic indexing. Salakhutdinov and Hinton [21] proposed a novel representation method
for extending semantic indexing. This method uses the deep auto-encoder model, where
the higher layer is encoded with binary codes and the lower layer is generated based on
word-count vectors. They also introduced the constrained Poisson model to deal with
documents with varying lengths. Mirowski [19] improved the deep auto-encoder model
by introducing a dynamic variable using gradient-based MAP inference. This dynamic
variable is capable of not only calculating the encoder and decoder cross-entropy, but
also training classifiers together with document label. Thus, this method can predict the
document categories, determine a better optimization objective function, improve doc-
ument semantic indexing, and determine the number of steps required by the difference
between the current value and the previous dynamic variables. Also, the topic model
complexity can be reduced to a cross-entropy loss function model. Wu [23] introduced
a deep architecture composed of restricted Boltzmann machines RBMs (which exploits
nonlinear embedding and is thus different from other DNNs) to compute the seman-
tic representation of documents. In this low-dimensional semantic space, the nonlinear
features embedded through the deep semantic embedding model can achieve a better
compact representation. The model also uses discriminative fine-tuning and modifies the
calculation of rank scores of relevant and irrelevant documents. Therefore, the indexing
performance is improved by this model.
In this paper, considering biomedical document semantic indexing as a case study, we

propose a novel indexing approach with deep learning. To deal with the large number
of professional terms in biomedical documents, we propose a hierarchical CNN-based
coarse-to-fine indexing framework (HC) and design a suitable loss function for CNN
training. Considering the high correlation of different labels, we formulate the indexing
problem as amulti-label classification system. Because only the title and abstract informa-
tion of documents is provided, we introduce a rich document representation using both
the MetaMap keywords and the Wikipedia category.

Methods
Hierarchical CNN-based framework for semantic indexing (HC)

LeCun [15] introduced error gradients and the BP algorithm into the CNNs structure,
making CNNs more extensively applicable. Using the principle of weight parameters with
respect to sharing and local receptive fields, the number of trainable parameters can be
minimized in the network, which makes the neural network structure simpler and more
flexible.
Considering the numerous classes of the documents and the uneven distribution of

samples, we introduce a hierarchical CNN-based framework (HC) to conduct biomedical
document semantic indexing for both multiple labels and correlated labels. The archi-
tecture of our proposed framework is summarized in Fig. 1. The model consists of three
parts: feature representation, CNN model, and multi-label hierarchical classification.
Hierarchical indexing achieves far superior performance compared with flat classifica-
tion when processing large number of classes. Moreover, the coarse clustering step is an

Yan et al. Big Data Analytics (2016) 1:7 Page 4 of 13

Fig. 1 A hierarchical CNNs-based framework with multi-label classification for semantic indexing (HC)

effective way to remove noise from the unevenly distributed samples. In addition, we also
design suitable loss functions for the learning of this framework. The details of these three
parts are described in the following subsections.

Semantic feature representation

Wikipedia is a multi-language encyclopedia, covering a wide range of information on
individual wiki pages. Wikipedia is an actual corpus, and with rapid changes in social
information, it is constantly expanded and updated. There is a vast amount of informa-
tion about any particular word provided on its Wikipedia page, but the format of each
page is not exactly the same.
Considering the shortcomings of BOW, combined with the challenges associated with

the indexing task for medicinal abstract documents, we effectively extract information
from the Wikipedia page, then use the Wikipedia category information to expand docu-
ment representation based on MetaMap keywords. MetaMap is a widely applied open-
source toolkit which extracts concepts in the UMLS metathesaurus from biomedicine
texts. Gabrilovich [7, 8] proposed a feature construction method to enrich document
representation. With each document scanned by the feature generation, the relevant
Wikipedia concept can be expanded to the document instead of using BOW features. We
thus also use this encyclopedia (Wikipedia) to expand the document representation.
We download the Wikipedia corpus up to the year 2012 and development toolkit for

the appropriate word links to Wikipedia. When we scan one document, this toolkit can
link words that appear in the Wikipedia corpus. These words are also called anchor text
words. The process of constructing the document representation is as follows. First, we
find the words of the document based on MetaMap, then automatically link the anchor

Yan et al. Big Data Analytics (2016) 1:7 Page 5 of 13

text word (from the MetaMap words) corresponding to Wikipedia categories based on
the toolkit. Words without links to MetaMap words are called non-anchor text words.
For these non-anchor text words, we compute the distribution of category-words (non-
anchor text words) using the known distribution of words (anchor text words)-documents
and categories-documents. This process is referred to as latent Dirichlet allocation (see
Fig. 2).
Parameter description: n is the number of distinct words in the documents, m is the

total number of classes in all documents, and t is the number of Wikipedia categories.
Matrix P1 represents the distribution of words and documents, where the row wi is the
probability that the wordwi will appear in j(1, . . .m) classes of documents, denoted aswij.
Matrix P2 represents the distribution of words and Wikipedia categories, where the row
wi is the probability that a word wi will correspond to the Wikipedia category k(1, . . . t),
denoted as wik . Matrix P3 represents the distribution of Wikipedia categories and docu-
ment classes, where the row ck is the probability that the category ck will appear in the
documents, denoted as ckj.
Because the number of Wikipedia categories corresponding to each anchor text word

is not fixed, the corresponding number varies greatly. Some of the words may correspond
to only one category (e.g., “biomolecular”), some may have three corresponding cate-
gories (e.g., “protein”), and some may have seven (e.g., “disease”); this leads to unequal
extension lengths for each document. To reduce the differences in document length and
also to avoid introducing excessive wiki category extensions (some Wikipedia categories
contribute very little and even introduce noise when predicting document labels), we
compute the extended Wikipedia categories based on the MetaMap, and remove some
wiki categories (e.g., time and date categories) that do not have enough positive impact
on the document representation. We also remove some stop words and function words,
as the removal of these words does not affect the understanding of the article. We then
statistic the occurrence frequency of the categories, retaining only the top 3000 cate-
gories. After post-processing, each document is represented as a vector of fixed length
3000*1. Each element in the document representation vector is the word frequency cor-
responding to the wiki category appearances; that is, the vector is the input to our
model.
We were able to use the Wikipedia categories for the corresponding anchor words to

calculate theWikipedia categories of non-anchor words (P2). This form of document rep-
resentation combines global (the proportion of the words in all documents categories)
and local (anchor words in each document category) information. Hence, through the
text representation, we were able to learn more semantic information via the model.

Fig. 2 Words mapping with Wikipedia

Yan et al. Big Data Analytics (2016) 1:7 Page 6 of 13

CNNs training

CNNs have the advantage of the transformation invariance features of the visual system
structure. The layers in the network interleave one-dimensional convolutional layers and
k-max pooling layers. In convolution networks, each neuron is only connected to the local
area of the lower layer, instead of the whole layer of neurons. That is, it will extract partial
information or features. Each neuron detects features from the local receptive field (which
may or may not overlap), depending on the operation the neuron performs. Convolution
neurons act as feature detectors, and the characteristics of the reaction (i.e., the degree of
the reaction) depend on the weights of the neural connections. Each layer of a convolu-
tion neural network contains several feature maps. Each feature map is generated by one
convolution kernel and detects a certain local feature at every position of the preceding
layer. All of the nodes on the same map share a set of convolution kernel parameters.
ReLU [14] is the abbreviation of Rectified Linear Unit, which can be used to increase the

nonlinear properties of the network, as well as the sparsity, without affecting the receptive
fields of the convolution layer. The ReLU function, which is also the neuron’s output, is:
f (x) = max (0, x). The function signifies that the neuron outputs zero for an input value
of less than zero, otherwise the neuron outputs the original input value. The sigmoid
function, which is used widely in deep learning with excessive layers, suffers from the
vanishing gradient problem, making the training process difficult. Using the ReLU instead
of the sigmoid function in a deep network ensures that the network neurons are modestly
sparse after training, thus eliminating the issue of vanishing gradients along with the paths
of active hidden units.
Besides, the advantage of ReLU is that the network trains faster and can still achieve

the sigmoid pre-training effect without pre-training or advanced optimization strategies.
Max pooling acts as a feature mapping layer and its operator is a nonlinear subsampling
function that returns the maximum of a set of values [15].
In each convolution layer, we filter every input sample vector using multiple one-

dimensional filters, and extract the local receptive field feature by setting the size of the
sliding window. A convolution layer followed by an ReLU and a k-max pooling forms a
feature map. At the end of the network, there are the fully-connected layers such that
each feature map connects to all of the subsampling maps from the previous layer. Mul-
tiple convolution kernels, which are computed for each convolution layer using multiple
feature maps with different filters, enrich the representation of the documents.
The recently introduced technique called “dropout” can reduce over-fitting by decreas-

ing the complexity of co-adaptation of data [10]. Neurons are “dropped out” by randomly
setting 50 % of the nodes in each hidden layer in the network to 0, which means that
50 % do not participate in the forward pass or back-propagation processes. In our system,
“dropout” is used in all convolutional and fully-connected layers.

Hierarchical indexing

In general, multiple labels are not independent. Thus, effectively using the dependencies
among labels can improve the accuracy of multi-label classification [5, 17]. For dealing
with thousands of labels, clustering labels into coarse subsets may greatly improve the
efficiency of classification. Recently, word2vec [18] representation in continuous space
has been found to represent a good relationship between words, and this process can
make related words and groups of words appear next to each other in the representation

Yan et al. Big Data Analytics (2016) 1:7 Page 7 of 13

space. Based on this theory, Ioannis Pavlopoulos trained the word representation for
biomedicine labels1, which greatly improved our research. Based on this word2vec repre-
sentation, we designed an indexing structure that introduces label (word) embedding for
multi-label classification (shown in the third part of Fig. 1).
There are two error updates in our model: coarse classification and sub-classification.

We use Eq. 1 to calculate the coarse classification, which is equivalent to the prelimi-
nary estimate of the root node of document labels. Then, based on Eq. 2 to calculate the
document labels, we calculate the fine classification of the documents. This forms our
hierarchical classification approach.
In our model, the error function of the clustered coarse classes (categories) and the

weight updates are performed as follows.

E = 1
NC

∑

C

∑

N

(
f (x,w) − yc

)2, �w = ∂E
∂w

(1)

where C is number of coarse clustering categories,N is the number of training samples, x
is the output of CNNs, w is the connection weights between the output layer and coarse
cluster layer, f (x,w) is the output value of the model and yc is the target. For each C, the
hierarchical classification function is

�wk = ∂Jk
∂w

, Jk = 1
nk

∑(
f (x,wk) − y

)2 (2)

where k is the number of categories for each coarse subset of the corresponding sub-
classification. We use word2vec to cluster the labels into coarse subsets, and subdivide
each clustered documents to make the final label judgment.
Coarse classification is a multi-class classification problem in our model, and this layers

labels are independent of each other; that is, each document belongs to one of these major
categories. The category number (C) is determined based on the word2vec cluster results,
where different datasets have different results. Sub-classification is a multi-label classifi-
cation problem, where each label can have some relationship with respect to the other
labels under the same coarse category. Thus, these subcategories are not independent.
Although our prediction approach entails two parts, the fine-tuning process is combined.
First, we predict the test document label according to the weight parameters obtained
from the training set, and then we calculate the error with respect the real label. From
Eqs. 1 and 2, we calculate the error and back-propagate it through the neural network.We
continuously update these connection weights until the objective function is optimized.

Experiments
Dataset and experimental setup

We use a biomedical document dataset from the BioASQ task challenge for semantic
indexing2. We download data up to the year 2013 from the website, and select one million
articles. Each article contains only the article title and abstract, and there are five to 20
classes (called Medical Subject Headings in the medical field, MeSH) for each article on
average. Altogether, there are 27,149 MeSH headings. The National Library of Medicine
uses MeSH to index articles in MEDLINE. Because of the extremely uneven distribution

Yan et al. Big Data Analytics (2016) 1:7 Page 8 of 13

of the dataset, only about 150 MeSH headings appear in more than 1 % of the entire
MEDLINE database. Yepes’ paper [25] selected the top 10 most frequent MeSH headings
to avoid the extremely unbalanced distribution of the dataset. With the same motivation,
as well as to extend the experiments, we introduce some unbalanced samples and select
the top 2000 most frequent MeSH headings in which each category sample appears more
than 500 times. We apply the widely-used cuda-convnet package3to train our model on a
single NVIDIA GPU.
We randomly select 80 % of the data as training samples and 20 % as test samples, and

perform 10-fold cross-validation in our experiments.

Details

The dimensionality of the input, which is the feature representation of our HC model,
is 3000 by 1. The main parameters affecting model performance are the size of the
convolutional layer sliding window, the parameter k of k-max pooling, the number of
fully-connect layers, and each layer’s node number. A large sliding window entails smaller
connection weight parameters between the layers, increased information redundancy,
and a smaller difference between the documents. A smaller sliding window entails greater
connection weight parameters and more complexity in the weight calculation and the
update process. k-Max pooling was initially proposed to solve the problem of variable
length inputs such that the selected max k nodes can be used to form the variable
transform into a fixed-length problem. Because the sliding window size settings directly
determine the number of nodes in the pooling layer, we introduce k-max pooling to fix
the number of nodes to better adjust the parameters of the fully connected layers. This is
done to improve training efficiency and also to better observe the influence of the model
parameters.
Each training sample (article) contains about 50 to 100 words. In our experiments,

the training samples involves mapping the MetaMap keywords based on UMLS, then
using the Wikipedia category information to expand the document representation. From
all of the data in the sample set, we include the 3000 most frequent categories to rep-
resent the document in the form of a vector, in which each category is regarded as
one dimension. To reduce the number of hidden units, we experimented with differ-
ent size settings for the sliding window of the first layer. The maximum number of
steps of the window slide is 3000, then followed by ReLU and pooling layer; that is, the
document is used in its entirety to capture the feature information. We also vary the
sliding window size (from 3000 to 10) to determine the best model. We compare the
performance of our best model (with five pooling layers, each of which follows a con-
volutional layer, and three fully-connected layers at the end of the CNN) with existing
methods.
In our experiment, we use matconvernet [22] to implement the CNNmodel. Our model

achieved its best results when the parameter settings are as follows. The sliding window
size is set to 200 steps, the learning rate is set to 0.001, the batch size is set to 400, the
numepochs is set to 50, and the weight decay is set to 0.003. In the fully-connected layers,
we choose the three layers corresponding to the classic LeNet5 [20] layer. The num-
ber of neural nodes is 400, 300, and 200 in the first, second, and third fully-connected
layer respectively. The following experimental results and analysis are based on these
parameter settings.

Yan et al. Big Data Analytics (2016) 1:7 Page 9 of 13

Quantitative evaluation

We use the micro and macro Precision (P), Recall (R), F1-measure (F1) and Similarity (S)
as the evaluation criteria [12].

Positive Negative Predicted
Positive True Positive (TP) False Negative (FN) Actual Positive
Negative False Positive (FP) True Negative (TN) Actual Negative
Actual Predicted Positive Predicted Negative

TP is the number of true positives, FN is the number of false negatives, FP is the number
of false positives, and TN is the number of true negatives. Finally, precision (P) and recall
(R) are defined as

P = TP
(TP + FP)

(3)

R = TP
TP + FN

(4)

F1 and Similarity (S) are comprehensive assessment metrics and defined as

F1 = 2 ∗ P ∗ R
(P + R)

(5)

S = TP
(TP + FP + FN)

(6)

Comparisonmethods

In the experiments, we compare six approaches: our proposed hierarchical classification
(HC) systemwith CNNs, a directly binary classification (DBC_flat) method, support vec-
tor machines (SVM)4, latent Dirichlet allocation (LDA) [2], naive Bayesian (NB) [13], and
logistic regression ((LR)) [13].
Directly Binary Classification (DBC_flat): In our experiments, to verify the validity of

the hierarchical classification in our HC model, we compared our method to flat classifi-
cation based on the CNNmodel, called DBC_flat. The total number of document classes
in this approach is 2000. Regarding each class as a binary classification entails extending
each of the 2000 nodes into two nodes. Thus, the last layer of the model has 4000 nodes.
The label (1,0) signifies that the document belongs to this class; otherwise, its label is (0,1).
Through the output value of the sigmoid function computing nodes, the value of the two
nodes is compared to determine whether it belongs to the class. The output value of the
nodes is computed by the sigmoid function.
Support Vector Machines (SVM): We consider three kernel types for the SVM model:

linear kernel, RBF function, and sigmoid function. The linear kernel is used for linearly
separable cases and is the simplest kernel with the least parameters. The RBF func-
tion is used mainly for linearly inseparable cases but entails multiple parameters. Our
experimental results signify that the RBF function is preferable for our task, and we use
cross-validation on the training set to select the RBF parameters. The multi-label classifi-
cation is regarded as multiple binary classification problems in SVM. The samples of each

Yan et al. Big Data Analytics (2016) 1:7 Page 10 of 13

class in the dataset are unevenly distributed. For each class, positive samples are defined
as current class samples, and the negative samples are two to three times more numer-
ous than the positive samples. We thus train 2000 classifiers. In the test phase, each test
sample is judged by 2000 classifiers to predict whether it belongs this class.

Results and discussion

Experiments with differentmodels

Table 1 and Fig. 3 shows the results of biomedical abstract semantic indexing. Experi-
mental analysis indicates that DBC_flat classification using CNNs (where each class as a
binary classification problem) has very poor performance. By analyzing the results from
the test documents, we found that most test samples were predicted to be negative by
the model. Further evaluation of the training stage revealed very few class numbers of
positive samples. Too many nodes were connected in the model and the adjustment
of their weights was not updated in the fine-tuning process. Specifically, more weights
were updated in the negative samples compared with the positive samples. In response
to this problem of update weights, we try the solution of dropout strategy as we used
in HC to reduce the number of weights update, but it has little impact on the results.
In response to this problem of update weights, we include the dropout strategy as we
used in HC to reduce the number of weight updates, but this has little impact on the
results.
Our proposed hierarchical semantic indexing method (HC) greatly increased the clas-

sification precision for the positive samples in the first layer. Figure 4 shows the label
embedding representation of coarse clusters(partly). This hierarchical semantic frame-
work can effectively reduce the negative impact of negative samples, and mainly updates
the weights connected with previous layer nodes during the next layer classification. The
updating of weights of nodes that are connected with different previous layer nodes are
independent from one other (see Eq. 2), which greatly improve the efficacy of this model
for training of positive samples.
We also compare ReLU with the sigmoid function in our CNNs model. The network

neurons with ReLU are reasonably sparse after training; thus, vanishing gradients do not
exist along with paths of active hidden units in an arbitrarily deep network. We also
find that “dropout” weight updating eliminates dependencies on the interaction relation-
ship among the hidden nodes. The “dropout” method encourages each individual hidden
unit to learn useful features without relying on other specific hidden units to correct its
mistakes.
Overall, the effectiveness of our approach is not only the result of our hierarchical index-

ing architecture but is also positively influenced by the feature representation. MetaMap

Table 1 Biomedicine semantic indexing results on Precision (P), Recall (R), F1 metrics

Method MiP MiR MiF1 MaP MaR MaF1

LR 0.353 0.385 0.368 0.316 0.341 0.328

NB 0.382 0.426 0.402 0.339 0.361 0.350

SVM 0.477 0.513 0.495 0.464 0.509 0.485

LDA 0.487 0.534 0.509 0.483 0.519 0.500

DBC_flat 0.548 0.482 0.513 0.519 0.445 0.479

HC 0.640 0.579 0.608 0.618 0.544 0.579

Yan et al. Big Data Analytics (2016) 1:7 Page 11 of 13

Fig. 3 Similarity measure on dataset

can extract concepts that appear in the UMLS from biomedical text. These vocabularies
can provide a better representation for retrieving relevant MEDLINE citations.

Significance test

Figure 5 shows the F1-measure performance comparison of the our method (HC) with
other shallow and deep learning approaches. From this figure, we observe the follow-
ing: (1) the deep learning methods have better performance than the shallow learning
methods; and (2) the hierarchical indexing framework is better than the flat learning
methods.

Conclusion
This paper presents a new model with CNNs for learning semantic representations
to solve biomedical abstract indexing. Our proposed hierarchical CNN-based indexing
architecture shows performance compared with existing methods. This architecture can
also be easily extended to other multi-label indexing tasks. Because of time limitations,

Fig. 4 Coarse clusters of label embedding

Yan et al. Big Data Analytics (2016) 1:7 Page 12 of 13

Fig. 5 Significant test

we present limited experiments and related results on 2000-category biomedical docu-
ment indexing in this paper with the aim of a proof-of-concept. Hence, in the near future
we will continue to investigate and improve our proposed approach for larger amounts
of semantic labels and more biomedical documents. In addition, based on the GPU plat-
form we have already set up, we can do parallel computing to deal with the big data and
better optimize our model. We are thus prepared to meet the challenge of big data using
our approach.

Endnotes
1http://participants-area.bioasq.org/.
2http://www.bioasq.org/participate/challenges.
3http://deeplearning.net/software/pylearn2/library/alex.html.
4https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Authors’ contributions
YY carried out the model studies and drafted the manuscript. X-CY mend this paper. B-WZ participated in its design. CY
participated in its experiments. H-WH is the instructor. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 13 November 2015 Accepted: 4 August 2016

References
1. Bai B, Weston J, Grangier D, Collobert R, Sadamasa K, Qi Y, Chapelle O, Weinberger K. Supervised semantic

indexing. In CIKM. 2009;187–96.
2. Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.
3. Chen XW, Lin X. Big data deep learning: Challenges and perspectives. Access, IEEE. 2014;2:514–25.
4. Deerwester SC, Dumais. Indexing by latent semantic analysis. JASIS. 1990;41(6):391–407.
5. Dekel O, Keshet J, Singer Y. Large margin hierarchical classification. In: Proceedings of the twenty-first international

conference on Machine learning. ACM; 2004. p. 27.
6. dos Santos CN, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts. In: COLING; 2014.
7. Gabrilovich E, Markovitch S. Overcoming the brittleness bottleneck using wikipedia: Enhancing text categorization

with encyclopedic knowledge. In: AAAI; 2006. p. 1301–6.

http://participants-area.bioasq.org/
http://www.bioasq.org/participate/challenges
http://deeplearning.net/software/pylearn2/library/alex.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Yan et al. Big Data Analytics (2016) 1:7 Page 13 of 13

8. Gabrilovich E, Markovitch S. Computing semantic relatedness using wikipedia-based explicit semantic analysis. In:
IJCAI; 2007. p. 1606–11.

9. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):
504–7.

10. Hinton GE, Srivastava. Improving neural networks by preventing co-adaptation of feature detectors. 2012. arXiv
preprint arXiv:1207.0580.

11. Hofmann T. Probabilistic latent semantic indexing. In: SIGIR; 1999. p. 50–7.
12. Huang SC, Chen BH. Highly accurate moving object detection in variable bit rate video-based traffic monitoring

systems. Neural Netw Learn Syst, IEEE Trans. 2013;24(12):1920–31.
13. Jordan A. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Adv

Neural Inf Process Syst. 2002;14:841.
14. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances

in neural information processing systems; 2012. p. 1097–105.
15. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE.

1998;86(11):2278–324.
16. Mcauliffe JD, Blei DM. Supervised topic models. In: NIPS; 2008. p. 121–8.
17. McCallum A, Rosenfeld R, Mitchell TM, Ng AY. Improving text classification by shrinkage in a hierarchy of classes. In:

ICML; 1998. p. 359–67.
18. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013. arXiv

preprint arXiv:1301.3781.
19. Mirowski P, Ranzato M, LeCun Y. Dynamic auto-encoders for semantic indexing. In: NIPS 2010 Workshop on Deep

Learning; 2010.
20. Mrázová I, Kukačka M. Hybrid convolutional neural networks. In: Industrial Informatics, 2008. INDIN 2008. 6th IEEE

International Conference on, IEEE; 2008. p. 469–74.
21. Salakhutdinov R, Hinton G. Semantic hashing. Int J Approx Reason. 2009;50(7):969–78.
22. Vedaldi A, Lenc K. Matconvnet: Convolutional neural networks for matlab. In: Proceedings of the 23rd Annual ACM

Conference on Multimedia Conference. ACM; 2015. p. 689–92.
23. Wu H, Min MR, Bai B. Deep semantic embedding. In: SIGIR 2014 Workshop on Semantic Matching in Information;

2014.
24. Wu X, Zhu X, Wu GQ, Ding W. Data mining with big data. Knowl Data Eng, IEEE Trans. 2014;26(1):97–107.
25. Yepes AJ, MacKinlay A, Bedo J, Garnavi R, Chen Q. Deep belief networks and biomedical text categorisation. In:

Australasian Language Technology Association Workshop; 2014. p. 123.
26. Zeng D, Liu K, Lai S, Zhou G, Zhao J. Relation classification via convolutional deep neural network. COLING.

20142335–44.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Related work
	Methods
	Hierarchical CNN-based framework for semantic indexing (HC)
	Semantic feature representation
	CNNs training
	Hierarchical indexing

	Experiments
	Dataset and experimental setup
	Details
	Quantitative evaluation
	Comparison methods

	Results and discussion
	Experiments with different models
	Significance test

	Conclusion
	Endnotes
	Authors' contributions
	Competing interests
	References

